Skip to Main content Skip to Navigation
New interface
Journal articles

Decomposition mechanisms of trinitroalkyl compounds : a theoretical study from aliphatic to aromatic nitro compounds

Abstract : The chemical mechanisms involved in the decomposition of trinitroethyl compounds were studied for both aliphatic and aromatic derivatives using density functional theory calculations. At first, in the case of 1,1,1-trinitrobutane, used as a reference molecule, two primary channels were highlighted among the five investigated ones: the breaking of the C-N bond and the HONO elimination. Then, the influence of various structural parameters was studied for these two reactions by changing the length of the carbon chain, adding substituents or double bonds along the carbon chain. If some slight changes in activation energies were observed for most of these features, no modification of the competition between the two investigated reactions was highlighted and the breaking of the C-N bond remained the favoured mechanism. At last, the reactions involving the trinitroalkyl fragments were highlighted to be more competitive than reactions involving nitro groups linked to aromatic cycles in two aromatic systems (4-(1,1,1-trinitrobutyl)-nitrobenzene and 2-(1,1,1-trinitrobutyl)-nitrobenzene). This showed that aromatic nitro compounds with trinitroalkyl derivatives decompose from their alkyl part and may be considered more likely as aliphatic than as aromatic regarding the initiation of their decomposition process.
Document type :
Journal articles
Complete list of metadata

Cited literature [1 references]  Display  Hide  Download
Contributor : Gestionnaire Civs Connect in order to contact the contributor
Submitted on : Thursday, March 20, 2014 - 11:25:00 AM
Last modification on : Tuesday, December 7, 2021 - 3:48:01 PM
Long-term archiving on: : Monday, April 10, 2017 - 1:56:20 AM


Files produced by the author(s)




Guillaume Fayet, Patricia Rotureau, Benoît Minisini. Decomposition mechanisms of trinitroalkyl compounds : a theoretical study from aliphatic to aromatic nitro compounds. Physical Chemistry Chemical Physics, 2014, 16 (14), pp.6614-6622. ⟨10.1039/C3CP54719A⟩. ⟨ineris-00961540⟩



Record views


Files downloads