E. Papa, S. Kovarich, and P. Gramatica, On the Use of Local and Global QSPRs for the Prediction of Physico-chemical Properties of Polybrominated Diphenyl Ethers, Molecular Informatics, vol.26, issue.2-3, pp.232-240, 2011.
DOI : 10.1002/minf.201000148

E. Papa and P. Gramatica, QSPR as a support for the EU REACH regulation and rational design of environmentally safer chemicals: PBT identification from molecular structure, Green Chemistry, vol.27, issue.5, pp.836-843, 2010.
DOI : 10.1039/b923843c

B. Bhhatarai, W. Teetz, T. Liu, T. Öberg, N. Jeliazkova et al., CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals, of the European Parliament concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), pp.189-204, 1907.
DOI : 10.1002/minf.201000133

M. J. Kamlet, The Relationship of Impact Sensitivity with Structure of Organic High Explosives. I. Polynitroaliphatic Explosives, Sixth Symposium (International) on Detonation, pp.69-72, 1976.

M. J. Kamlet and H. G. Adolph, The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives, 15. B.M. Rice, and J.J. Hare, A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules, pp.30-34, 1979.
DOI : 10.1002/prep.19790040204

J. Mullay, A Relationship between Impact Sensitivity and Molecular Electronegativity, Propellants, Explosives, Pyrotechnics, vol.55, issue.2, pp.60-63, 1987.
DOI : 10.1002/prep.19870120206

J. Mullay, Relationships between Impact Sensitivity and Molecular Electronic Structure, Propellants, Explosives, Pyrotechnics, vol.116, issue.4, pp.121-124, 1987.
DOI : 10.1002/prep.19870120403

C. Zhang, Y. Shu, Y. Huang, X. Zhao, and H. Dong, Investigation of Correlation between Impact Sensitivities and Nitro Group Charges in Nitro Compounds, The Journal of Physical Chemistry B, vol.109, issue.18, pp.8978-8982, 2005.
DOI : 10.1021/jp0512309

C. Cao and S. Gao, Two Dominant Factors Influencing the Impact Sensitivities of Nitrobenzenes and Saturated Nitro Compounds, The Journal of Physical Chemistry B, vol.111, issue.43, pp.12399-12402, 2007.
DOI : 10.1021/jp074078e

P. Politzer and J. S. Murray, Relationships between dissociation energies and electrostatic potentials of C???NO2 bonds: applications to impact sensitivities, Journal of Molecular Structure, vol.376, issue.1-3, pp.419-424, 1996.
DOI : 10.1016/0022-2860(95)09066-5

J. S. Murray, P. Lane, P. Politzer, and P. R. Bolduc, A relationship between impact sensitivity and the electrostatic potentials at the midpoints of C???NO2 bonds in nitroaromatics, Chemical Physics Letters, vol.168, issue.2, pp.168-135, 1990.
DOI : 10.1016/0009-2614(90)85118-V

F. J. Owens, Calculation of energy barriers for bond rupture in some energetic molecules, Journal of Molecular Structure: THEOCHEM, vol.370, issue.1, pp.11-16, 1996.
DOI : 10.1016/S0166-1280(96)04673-8

X. Song, X. Cheng, X. Yang, and B. He, Relationship between the Bond Dissociation Energies and Impact Sensitivities of Some Nitro-Explosives, Propellants, Explosives, Pyrotechnics, vol.132, issue.4, pp.31-306, 2006.
DOI : 10.1002/prep.200600042

V. L. Korolev, T. S. Pivina, A. A. Porollo, T. V. Petukhova, A. B. Sheremetev et al., Differentiation of the molecular structure of nitro compounds as the basis for simulation of their thermal destruction processes, Russian Chemical Reviews, vol.78, issue.10, pp.78-945, 2009.
DOI : 10.1070/RC2009v078n10ABEH004055

H. Nefati, J. Cense, and J. Legendre, Prediction of the Impact Sensitivity by Neural Networks, Prediction of the Impact Sensitivity by Neural Networks, pp.804-810, 1996.
DOI : 10.1021/ci950223m

URL : https://hal.archives-ouvertes.fr/ineris-00971902

Z. Jun, C. Xin-lu, H. Bi, and Y. Xiang-dong, Neural networks study on the correlation between impact sensitivity and molecular structures for nitramine explosives, Structural Chemistry, vol.12, issue.5, pp.501-507, 2006.
DOI : 10.1007/s11224-006-9101-6

J. Li, A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy, Journal of Hazardous Materials, vol.174, issue.1-3, pp.728-733, 2010.
DOI : 10.1016/j.jhazmat.2009.09.111

M. H. Keshavarz, Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives, Journal of Hazardous Materials, vol.148, issue.3, pp.648-652, 2007.
DOI : 10.1016/j.jhazmat.2007.03.022

M. H. Keshavarz, H. R. Pouretedal, and A. Semnani, Novel correlation for predicting impact sensitivity of nitroheterocyclic energetic molecules, 31. M.H. Keshavarz, and M. Jaafari, Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial Neural Network, Propel. Explos. Pyrotech, pp.803-807, 2006.
DOI : 10.1016/j.jhazmat.2006.07.046

M. H. Keshavarz and H. R. , Simple empirical method for prediction of impact sensitivity of selected class of explosives, Journal of Hazardous Materials, vol.124, issue.1-3, pp.27-33, 2005.
DOI : 10.1016/j.jhazmat.2005.05.009

M. H. Keshavarz, A. Zali, and A. Shokrolahi, A simple approach for predicting impact sensitivity of polynitroheteroarenes, Journal of Hazardous Materials, vol.166, issue.2-3, pp.1115-1119, 2009.
DOI : 10.1016/j.jhazmat.2008.12.022

G. T. Afanas-'ev, T. S. Pivina, D. V. Sukhachev, N. R. Badders, C. Wei et al., Comparative characteristics of some experimental and computational methods for estimating Impact Sensitivity Parameters of Explosives, Predicting the Impact Sensitivities of Polynitro Compounds Using Quantum Chemical Descriptors, pp.309-316, 1993.
DOI : 10.1002/prep.19930180602

J. A. Morrill and E. F. Byrd, Development of quantitative structure???property relationships for predictive modeling and design of energetic materials, Journal of Molecular Graphics and Modelling, vol.27, issue.3, pp.349-355, 2008.
DOI : 10.1016/j.jmgm.2008.06.003

M. H. Keshavarz, Simple Relationship for Predicting Impact Sensitivity of Nitroaromatics, Nitramines, and Nitroaliphatics, Propellants, Explosives, Pyrotechnics, vol.141, issue.2, pp.175-181, 2010.
DOI : 10.1002/prep.200800078

R. Wang, J. Jiang, Y. Pan, H. Cao, and Y. Cui, Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices, Journal of Hazardous Materials, vol.166, issue.1, pp.166-155, 2009.
DOI : 10.1016/j.jhazmat.2008.11.005

G. Fayet, A. Del-rio, P. Rotureau, L. Joubert, and C. Adamo, Predicting the Thermal Stability of Nitroaromatic Compounds Using Chemoinformatic Tools, Predicting the thermal stability of nitroaromatic Compounds using Chemoinformatic Tools, pp.623-634, 2011.
DOI : 10.1002/minf.201000077

URL : https://hal.archives-ouvertes.fr/ineris-00963310

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility, Chemical Physics Letters, vol.467, issue.4-6, pp.467-407, 2009.
DOI : 10.1016/j.cplett.2008.11.033

URL : https://hal.archives-ouvertes.fr/ineris-00963161

G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors, Journal of Molecular Modeling, vol.160, issue.4, pp.805-812, 2010.
DOI : 10.1007/s00894-009-0634-7

URL : https://hal.archives-ouvertes.fr/ineris-00963224

G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms, Journal of Molecular Modeling, vol.112, issue.10, pp.2443-2453, 2011.
DOI : 10.1007/s00894-010-0908-0

URL : https://hal.archives-ouvertes.fr/ineris-00961762

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, Theoretical Study of the Decomposition Reactions in Substituted Nitrobenzenes, The Journal of Physical Chemistry A, vol.112, issue.17, pp.4054-4059, 2008.
DOI : 10.1021/jp800043x

URL : https://hal.archives-ouvertes.fr/ineris-00963113

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, -Nitrotoluenes, The Journal of Physical Chemistry A, vol.113, issue.48, pp.13621-13627, 2009.
DOI : 10.1021/jp905979w

URL : https://hal.archives-ouvertes.fr/jpa-00210158

H. Wiener, Structural Determination of Paraffin Boiling Points, 50. M. Karelson, Molecular Descriptors in QSAR/QSPR, pp.17-20, 1947.
DOI : 10.1021/ja01193a005

G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations, Journal of Hazardous Materials, vol.171, issue.1-3, pp.845-850, 2001.
DOI : 10.1016/j.jhazmat.2009.06.088

URL : https://hal.archives-ouvertes.fr/ineris-00961948

J. Gasteiger and J. Zupan, Neural Networks in Chemistry, Angewandte Chemie International Edition in English, vol.32, issue.4, pp.503-527, 1993.
DOI : 10.1002/anie.199305031

C. Rücker, G. Rücker, M. Meringer, F. Lindgren, B. Hansen et al., y-Randomization and Its Variants in QSPR/QSAR, 56. J. Jaworska, and N. Jeliazkova, pp.2345-2357, 1996.
DOI : 10.1021/ci700157b

A. Maunz and C. Helma, Prediction of chemical toxicity with local support vector regression and activity-specific kernels, SAR and QSAR in Environmental Research, vol.25, issue.5-6, pp.413-431, 2008.
DOI : 10.1289/ehp.5758

F. Buchwald, T. Girschick, M. Seeland, S. Framer, and G. R. Handrick, Using local models to improve (Q)SAR predictivity Recommendations on the Transport of Dangerous Goods: Manual of Tests and Criteria The Relationship between Performance and Constitution of Pure Organic Explosive Compounds, Mol. Inform. United Nations Chem. Rev, vol.30, issue.61, pp.205-218, 1949.

V. Prana, G. Fayet, P. Rotureau, and C. Adamo, Predictive QSPR models for impact sensitivity of nitroaliphatic compounds, manuscript in preparation, 64. A.E. Reed, and F. Weinhold, Natural localized molecular orbitals, pp.83-1736, 1985.

T. B. Brill and K. J. James, Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives, 66. R.S. Mulliken, pp.2667-2692, 1955.
DOI : 10.1021/cr00024a005