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Abstract. Partial lower tropospheric ozone columns pro-
vided by the IASI (Infrared Atmospheric Sounding Interfer-
ometer) instrument have been assimilated into a chemistry-
transport model at continental scale (CHIMERE) using an
Ensemble Square Root Kalman Filter (EnSRF). Analyses are
made for the month of July 2007 over the European domain.
Launched in 2006, aboard the MetOp-A satellite, IASI shows
high sensitivity for ozone in the free troposphere and low
sensitivity at the ground; therefore it is important to evaluate
if assimilation of these observations can improve free tro-
pospheric ozone, and possibly surface ozone. The analyses
are validated against independent ozone observations from
sondes, MOZAIC1 aircraft and ground based stations (AIR-
BASE – the European Air quality dataBase) and compared
with respect to the free run of CHIMERE. These compar-
isons show a decrease in error of 6 parts-per-billion (ppb) in
the free troposphere over the Frankfurt area, and also a re-
duction of the root mean square error (respectively bias) at
the surface of 19 % (33 %) for more than 90 % of existing
ground stations. This provides evidence of the potential of
data assimilation of tropospheric IASI columns to better de-
scribe the tropospheric ozone distribution, including surface
ozone, despite the lower sensitivity.

The changes in concentration resulting from the observa-
tional constraints were quantified and several geophysical ex-
planations for the findings of this study were drawn. The cor-
rections were most pronounced over Italy and the Mediter-

1Measurements of OZone, water vapour, carbon monoxide and
nitrogen oxides by in-service AIrbus airCraft (http://mozaic.aero.
obs-mip.fr/web/).

ranean region, we noted an average reduction of 8–9 ppb in
the free troposphere with respect to the free run, and still a re-
duction of 5.5 ppb at ground, likely due to a longer residence
time of air masses in this part associated to the general circu-
lation pattern (i.e. dominant western circulation) and to per-
sistent anticyclonic conditions over the Mediterranean basin.
This is an important geophysical result, since the ozone bur-
den is large over this area, with impact on the radiative bal-
ance and air quality.

1 Introduction

In the last decade, there has been an increased need in de-
veloping air quality standards, guidelines and strategies for
air quality management. In particular, special attention has
been attached to ozone. Repetitive exposure to enhanced
ozone levels can cause various health problems, mostly res-
piratory illnesses like bronchitis and asthma (WHO, 2003).
To comply with these needs, a large variety of observational
platforms has been developed: a network of ground based
in situ or satellite data, ozone sondes, lidar, and commer-
cial or research aircraft; in parallel, deterministic models
(e.g. regional chemical transport model) have been devel-
oped, which take into account a large number of physical
and chemical interactions between predictor variables as well
as required input data (emissions, meteorology and land-
cover). Lately, European projects such as GEMS2 (Global
and regional Earth System (Atmosphere) Monitoring using

2http://gems.ecmwf.int/
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Satellite and in situ data) and MACC3 (Monitoring Atmo-
spheric Composition and Climate) have attempted to inte-
grate enhanced observing systems and modelling tools to de-
velop a comprehensive atmospheric composition monitoring
and forecasting system. Combining the two pieces of infor-
mation (observations and modeling) provides us a framework
named data assimilation (DA), where the knowledge about
the two components is used in order to obtain an optimal es-
timate for the state of the system under study: in our case the
tropospheric ozone 3-dimensional (3-D) distribution.

The problem addressed by data assimilation is to obtain
accurate analyses and/or forecasts of an evolving system,
given an imperfect dynamical model and observations. There
are two classical ways to deal with this problem: one is se-
quential data assimilation that only considers observations
made in the past until the time of analysis (which is the case
of real-time assimilation systems) and the other one non-
sequential, or retrospective, where observations from the fu-
ture can be used, for instance in a reanalysis exercise (Bout-
tier and Courtier, 1999). Examples of the two types of algo-
rithms identified can be found in the above cited work (in
Fig. 2, Sect. 1): Optimal Interpolation, 3D-Var, Extended
Kalman Filter for the first category and 4D-Var, fixed-lag
Kalman Smoother and Kalman Smoother for the second one,
roughly classified according to their complexity and appli-
cability to real-time problems. Compromises between these
approaches are possible (for example the use of the 3D-Var
in the ERA-40 reanalysis following Uppala et al., 2005). A
rigorous approach to solve the problem formulated above is
Bayesian estimation (Maybeck, 1979), but its full-scale im-
plementation is, most of the time, not possible due to the size
of the problem. In many practical applications, like for air
quality it is necessary to make simplifying assumptions. Ta-
lagrand (2003) emphasized that there are two main lines in
such assumptions: statistical linear estimation and ensemble
assimilation. Statistical linear estimation achieves Bayesian
estimation when the system is linear and the errors are Gaus-
sian. In particular, it provides a way of estimating the Best
Linear Unbiased Estimate (BLUE) (Talagrand, 2003). En-
semble assimilation is a form of Monte-Carlo approximation
which attempts to estimate probability distribution functions
(pdf) from the spread of the ensemble (Lahoz et al., 2007).
The first category is represented by algorithms such as: Opti-
mal Interpolation, the variational methods or various subopti-
mal versions of the sequential Kalman Filter. The second cat-
egory is represented by the Ensemble Kalman Filter (EnKF)
or the Particle filters (PF). Initiated by Evensen (1994), the
EnKF method uses the Monte Carlo approach to sample the
error statistics.

There are two important objectives when we apply data
assimilation. First, described above, is the state estimation
problem which consists in finding the best estimate of the
model state which best fits the model equations and the ob-

3http://www.gmes-atmosphere.eu/

served data. The second one is the parameter estimation. In
this case, we want to improve estimates of a set of poorly
known model parameters, the errors in the model being as-
sociated with uncertainties in the selected parameters. There
exists also combined state and parameter estimation, where
the two problems are addressed simultaneously. This issue
can be solved very efficiently using ensemble or variational
methods. In this study only the state estimation problem us-
ing ensemble methods is discussed.

Data assimilation is a relatively young research applica-
tion in atmospheric chemistry and air quality, but has been
widely applied in meteorology, where the principal objective
was to improve the initial conditions and forecasts. Starting
in the nineties of the last century, assimilation of satellite ob-
servation of chemical constituents was begun with a strong
focus on stratospheric ozone and related constituents (Khat-
tatov et al., 2000; Lahoz et al., 2007). Recently, the produc-
tion of total ozone forecasts has become routine in a number
of operational centres such as ECMWF (European Centre
for Medium-Range Weather Forecasts) and KNMI (Konin-
klijk Nederlands Meteorologisch Instituut). At ECMWF,
TOMS (Total Ozone Mapping Spectrometer) and SBUV (So-
lar Backscatter Ultraviolet Instrument) data were assimilated
during the 40-yr reanalysis (Dethof and Holm, 2002), and
more recently MIPAS (Michelson Interferometer for Pas-
sive Atmospheric Sounding) and SCIAMACHY (SCanning
Imaging Absorption spectroMeter for Atmospheric Cartrog-
rapHY) measurements, while the KNMI provides daily
global ozone forecasts based on assimilation of total ozone
from GOME (Global Ozone Monitoring Experiment) (Eskes
et al., 2003) and nowadays from SCIAMACHY. Lately, par-
ticular attention has been paid to assimilation of ozone in the
free troposphere, because tropospheric ozone is also known
as a strong greenhouse gas (Forster et al., 2007). Lamarque
et al. (2002) assimilated tropospheric ozone columns from
TOMS in the global chemistry-transport model MOZART:
assimilation consistently improved the model results when
compared with the available independent ozonesonde obser-
vations. Segers et al. (2004) assimilated GOME ozone pro-
files into the global chemistry-transport model TM3 using
a Kalman Filter with anisotropic covariance. A case study
showed that the assimilation of GOME profiles is able to im-
prove the simulation of the vertical ozone distribution even
in the case of strong vertical gradients.

Concerning air quality, there are several studies present-
ing assimilation of ozone data. In the case of ground based
ozone measurements, the first objective was the improvement
of the ozone field together with a bias/root mean square er-
ror (rmse) reduction (with respect to independent data sets).
This type of result was presented by Hanea et al. (2004) us-
ing hourly ozone concentrations from European ground sta-
tions in a sequential framework and Chai et al. (2007) using
various platforms (aircraft, surface and ozone sondes) and
a variational approach. A second objective, equally impor-
tant, especially in air quality, is the improvement in the ozone
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forecast. We know that, at continental scale, data assimila-
tion can partially correct model deficiencies (Blond and Vau-
tard, 2004), but the information injected in the system decays
quickly in time; nevertheless, this permits significant im-
provements in up to one-day ozone forecasts as emphasized
by Elbern and Schmidt (2001), Blond and Vautard (2004)
and Wu et al. (2009). In order to avoid this rapid decay, a
reasonable alternative could be the use of satellite data, be-
cause these data would add information into the system up-
wind of the considered target areas. To complement the ex-
isting, but sparse, observations from sondes and commercial
aircraft, the new generation of space borne infrared sounders
appears promising. This is the case of the TES (Tropospheric
Emission Spectrometer) instrument, launched in July 2004
aboard the NASA EOS Aura satellite, with a routine operat-
ing procedure on a 1-day-on, 1-day-off cycle. In a first study,
Parrington et al. (2008) examined the potential of TES obser-
vations (ozone and CO retrievals) for July and August 2006
to constrain the tropospheric ozone distribution. In a second
paper, Parrington et al. (2009) tested the impact of assimi-
lating ozone observations from TES on North American sur-
face ozone abundances in the GEOS-Chem model in August
2006. They found significant improvements in the bias in the
modeled free tropospheric ozone, as well as a large reduction
of the model bias with respect to surface ozone observations
in the western USA.

Recently, a new instrument called IASI (Infrared Atmo-
spheric Sounding Interferometer) was launched aboard the
European Metop-A satellite (in October 2006). The instru-
ment design resulted from compromises between the mete-
orology requirements (high spatial coverage) and the atmo-
spheric chemistry needs (accuracy and vertical information
for trace gases) (Clerbaux et al., 2009). In comparison with
TES, IASI has a better spatial coverage due to its 200 km
swath along the track that allows a twice daily overpass fre-
quency. Its good horizontal resolution and strong sensitivity
to free tropospheric ozone make IASI well suited for mea-
surements of tropospheric ozone with focus on air quality
(Eremenko et al., 2008; Dufour et al., 2010).

The assimilation of IASI data has already been studied.
Massart et al. (2009) studied the quality of IASI derived to-
tal ozone columns measurements by comparing them with
an ozone field obtained by assimilation of the ozone profiles
from the MLS (Microwave Limb Sounder) instrument and
of total ozone columns from the SCIAMACHY nadir instru-
ment. The comparison shows that on average, the IASI data
tend to overestimate the total ozone columns by 2 % to 8 %;
additionally the random observation error of the same data is
estimated to be about 7 % except over polar and deserts areas
where it is higher due to high surface emissivity.

In view of the elements presented above, the aim of the
present study was to show the potential of the IASI data
to constrain the 3-D tropospheric ozone distribution and to
quantify the gain obtained by assimilating these data in a re-
gional chemistry-transport model, CHIMERE. IASI obser-

vations are especially useful for this purpose, because of
their high horizontal resolution (about 12 km under the satel-
lite track), and because of their strong sensitivity to tropo-
spheric ozone (Clerbaux et al., 2009). To our knowledge,
this is the first study, trying to assimilate IASI data into a
regional chemistry-transport model over Europe, in order to
improve the estimate of free troposheric ozone fields and sur-
face ozone fields. In this region, a large number of surface
stations and vertical profiles from sounding sites and com-
mercial aircraft can be used as independent data for evalua-
tion/validation purposes.

Section 2 describes the satellite data used in the assimila-
tion exercise and in Sect. 3 a description of the chemistry-
transport model is given. Section 4 contains a detailed de-
scription of the selected assimilation algorithm and the set-
up of the experiments performed in this work. Results of
the application described above and its evaluation are pre-
sented and discussed in Sect. 5, followed by the conclusions
in Sect. 6.

2 The satellite data

In this work we use the tropospheric O3 retrievals ob-
tained using measurements performed with the Infrared At-
mospheric Sounding Interferometer (IASI). The retrieval of
ozone profiles from IASI spectra was performed with the
radiative transfer model KOPRA (Karlsruhe Optimised and
Precise Radiative transfer Algorithm, Stiller et al., 2000) and
its numerical inversion module KOPRAFIT. Both were de-
veloped for limb retrievals (MIPAS mission, Fisher, 2008)
and adapted later for the Nadir geometry. The inversion
method for ozone was developed to achieve maximal infor-
mation content in the lower troposphere and it was set-up
and first applied by Eremenko et al. (2008). A validation ex-
ercise performed over the first one-year-and-a-half of IASI
operation for the northern midlatitudes shows no significant
bias (less than 5 %) in the retrieved ozone and that the er-
rors derived from the error budget calculation (about 18 %
for 0–6 km partial columns for mid-latitudes) are consistent
with the standard deviation of the differences between sonde
measurements and IASI observations (Keim et al., 2009).

IASI observations have a good spatial resolution (the ver-
tical Nadir field of view for one IASI pixel has the diameter
of 12 km at the surface), comparable to the usual continental
range resolution of the models (0.2–0.5◦); however, a major
limitation of the IASI data is linked to the temporal resolu-
tion, with two overpasses per day: first in the morning and
a second one in the evening. Note although, that a twice
daily measurement frequency is a major achievement of the
IASI instrument (compared for example with GOME2, OMI-
Ozone Monitoring Instrument or TES instrument).

The principal diagnostic of the inversion of IASI ozone
partial columns is the Averaging Kernel Matrix (AVK),
which expresses the sensitivity of the retrieved profile to the
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Fig. 1. (a)The spatio-temporal distribution of days when at least one pixel was available for assimilation for a given grid cell (maximum of
30 days i.e. number of days included in the assimilation experiment, color scale varying from violet to red: violet represents relatively low
values and red relatively high values) and(b) the mean relative error (expressed in percent %) of the IASI inversions (error calculated on the
ozone partial columns 0–6 km) averaged over the month of July 2007 (black represents relatively low values and pink relatively high values).

true profile. The averaging kernel matrix describes both the
vertical resolution of each level in the retrieval and the rel-
ative weighting in the solution between the true profile and
a priori profile (in this case the climatology from McPeters
et al., 2007). Thus, the averaging kernel matrix provides the
information which, if properly applied to a particular in situ
profile data, transforms that measurement in order to have
the same resolution and a priori dependence as the IASI re-
trievals (see the equation below from Rodgers, 2000):

x̂= xa+A(xm−xa) = Axm+(I −A)xa (1)

wherexm represents the model simulated profile,xa is the a
priori profile (here issued from the McPeters climatology),I
is the identity matrix andA is the averaging kernel; in this
way we transform the model profile into a pseudo retrieved
profile. This matrix is calculated during the retrieval process
for each individual retrieved profile. Examples of typical av-
eraging kernels can be found in Dufour et al. (2010). Due to
the nature of the measurement, note that (1) it is impossible
to separate information originating from nearby vertical lev-
els; (2) the sensitivity to the lower levels of the ozone profile
(below 3 km) is relatively small. However, the method de-
veloped by Eremenko et al. (2008) allows to discriminate the
lower and the upper troposphere when thermal conditions are
favorable, typically during summer (Dufour et al., 2010).

We use the 0–6 km (partial) columns calculated from the
morning pass of the satellite over the European domain. Use
of these columns is a compromise between using observa-
tions as sensitive as possible towards surface ozone (values
of the AVK matrix for the lower levels greater than 0) and
representing as much as possible one independent piece of

information (the sum of the AVK diagonal values greater
than 1). The latter requirement would mean to use ozone
columns integrated from 0 to 8–9 km to increase DOF (de-
grees of freedom), but which would be less sensitive to free
tropospheric ozone than the 0–6 km columns. Only morning
overpasses are used, because they are more sensitive in the
lowermost atmospheric layers, due to a higher contrast be-
tween the temperature at the surface and temperature in the
first atmospheric layers. In this study, we consider only the
pixel with the hottest surface temperature in the grid cell i.e.,
with the potentially largest sensitivity to the lowermost tro-
posphere.

For a more visual approach, in Fig. 1a (left panel) we
present the spatio-temporal distribution of the IASI data (pix-
els) available for July 2007 on the European domain under
study. As we can see, the monthly spatial coverage is not ho-
mogeneous. In terms of number of pixels available for each
day, the Mediterranean Basin is the most represented (more
than 20 observations). On the contrary, north of 50◦ N, the
number of pixels per month is in general below 10. However,
even in the case of sparse observations, the assimilation sys-
tem can significantly spread information in space and time,
through local assimilation or advection from information-
rich to information-poor regions.

The error budget, calculated for each individual retrieved
profile accounts for errors due to the measurement noise, to
the uncertainty in the temperature profile, to smoothing and
to other sources (Eremenko et al., 2008). The corresponding
total error in the 0–6 km columns used in this study ranges
from 10 to 20 %, corresponding to less than 3 Dobson Units
(DU). A map with the monthly averaged (July 2007) error
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calculated for the European domain is presented in Fig. 1b
(right panel). As we can see, errors are often larger over the
western part of the domain (over the ocean) because of less
favorable thermal conditions (lower surface temperature and
thermal contrast than over the continent) and cloudy condi-
tions. It is worth noting that the errors described above rep-
resent an essential piece of information to be used in the as-
similation scheme as we will see in Sect. 4.

For assimilation purposes, the DOF is an important pa-
rameter that gives a proxy of the information injected in the
system. In Rodgers (2000), “the degrees of freedom for sig-
nal describe the number of useful independent pieces of in-
formation in the retrieved quantity”. It can be evaluated by
taking the trace of the averaging kernel matrix. As DOFs for
lower tropospheric ozone columns (0–6 km), averaged over
July 2007, reach a maximum value of 0.7 (Fig. 2), we do not
have one independent piece of information. There is gener-
ally more independent information in the southern half of
the domain than in the northern part and the same differ-
ence can be observed between the continental part and the
sea or ocean. This is likely due to the lower thermal con-
trast over northern and oceanic areas than over southern and
continental ones. We expect that these differences will have
some influence on the behavior of the assimilation system.
This is one of the reasons for splitting the study domain into
four quadrants for evaluation of the assimilation system (see
Fig. 2).

To close the section dedicated to the observation set, we
present in Fig. 3a the temporal evolution of the altitude at
which the maximum AVK is reached for the four zones
shown in Fig. 2. As we can see, the maximum of the AVK
for different days in July 2007 occurs in general between 3.5
and 5.5 km altitude with more variability during the first ten
days. We remark that, for the zone D (south-eastern part),
maxima are lower than for the other three zones for almost
the entire period under study; this is a priori a more suitable
situation for obtaining more information about surface and
boundary layer ozone levels. In Fig. 3b, we show the daily
coverage (available pixels) for the four regions considered
during July 2007. Most pixels are available in zone D and
C (north-eastern part). Over the south-eastern part of Eu-
rope (zone D), the presence of persistent anticyclonic condi-
tions during summer limits the cloud formation. The analysis
of meteorological conditions of July 2007 also shows a heat
wave event located over the north-eastern part of the domain
during the second decade of the month that was also associ-
ated with cloud cover. We will see in the results section the
impact of this on the assimilation experiment.

3 Regional Chemistry-Transport Model (RCTM)

In order to simulate ozone concentrations, we use the
CHIMERE RCTM version described in Bessagnet et
al. (2008) and documented at www.lmd.polytechnique.fr/

 

Fig. 2. Monthly mean of Degrees of Freedom (DOF) for the IASI
data (0–6 km columns) used in the study (blue color represents rela-
tively low values; pink color represents relatively high values). The
domain was split in four zones: zone A for North-West, zone B for
North-East, zone C for South-West and zone D for South-East.

chimere. This model simulates a wide variety of gaseous
pollutants (O3, NOx, SO2, CO, Volatile Organic Compounds
. . . ) as well as airborne particulate matter (this latter op-
tion is switched off for the current simulations). It has been
used for numerous air quality studies dealing with gaseous
and/or particulate pollution (e.g. Vautard et al., 2005; Coll
et al., 2005; Hodzic et al., 2006; Deguillaume, 2008).
It works operationally on the national French PREV’AIR
platform (www.prevair.org, Rouil et al., 2009) to produce
ozone, NOx and particulate concentrations short-term fore-
casts and analyses at the continental scale. In this frame-
work, ozone concentrations simulated with the CHIMERE
model have been compared to ground-based measurements
for three spring/summer periods between 2004 and 2006.
Honoŕe et al. (2008) showed that the mean model bias of
daily ozone maxima was mostly under 5 µg m−3 (micro-
grams per cubic meter), RMSE (root mean square error) was
generally less than 20 µg m−3 and temporal correlation was
more than 0.8 on average over Western Europe. Also in a
European framework, CHIMERE is currently used for sev-
eral operational applications, with recent examples in ensem-
ble forecasting in the GEMS project (Hollingsworth, 2008)
and data assimilation within the MACC project (http://www.
gmes-atmosphere.eu/).

For this work, the simulation is set up over a large west-
ern European domain (ranging from 14◦ W to 25◦ E and
from 35◦ N to 58◦ N). To cover this domain, we used 3713
(79× 47) horizontal grid points with 0.5◦ × 0.5◦ horizon-
tal resolution. 17 vertical levels are defined following a
hybrid (σ , p) scheme; their thickness varies from 50 m in
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Fig. 3. (a)Day to day variation of the altitude of the maximum AVK (averaging kernel) averaged over the four quadrants of the domain, for
July 2007;(b) day to day variation of the number of pixels used in assimilation for the four zones (blue for zone A, red for zone B, green for
zone C and violet for zone D).

the surface layer to a maximum value of about 1 km in
the free troposphere. We use a monthly climatology ob-
tained from simulations with the LMDz-INCA model (Inter-
action of Chemistry and Aerosol model coupled to the Lab-
oratoire de Ḿet́eorologie Dynamique General Circulation
model-LMDz) (Hauglustaine et al., 2004) to impose gaseous
concentrations at the domain boundaries (top and lateral con-
ditions). Primary pollutant emissions are based on the EMEP
(European Monitoring and Evaluation Programme) 2003 in-
ventory (Vestreng et al., 2005). Meteorological fields (pres-
sure, temperature, wind components, relative humidity, liq-
uid water content and precipitation) are calculated off-line
by the Integrated Forecasting System (IFS) of the European
Centre for Medium-Range Weather Forecasts (ECMWF) at
a 0.5◦ × 0.5◦ horizontal resolution.

4 Assimilation method

4.1 The Ensemble Kalman filter method

In this study, an advanced sequential data assimilation
method (EnKF) has been set-up for the purpose of 4-D data
assimilation. We examine the possibility of using ensembles,
generated by using Monte Carlo methods, to calculate spa-
tially and temporally varying forecast-error covariances for
the purpose of performing data assimilation.

There is a long list of successful EnKF applications to a
wide range of problems including meteorology (Houtekamer
and Mitchell, 2001; Buehner, 2005), oceanography (Kep-
penne and Rienecker, 2002; Evensen, 2007), oil reservoir
modelling (Evensen et al., 2006), air quality (Hanea et
al., 2004), stratospheric chemistry (Milewski and Bourqui,

2011) or land modelling (Reichle et al., 2002; Clark et al.,
2008).

In mathematical terms, the general data assimilation prob-
lem is defined by the computation of the probability den-
sity function (PDF) of the model solution, conditioned on
the measured observations, (i.e. following the Bayes theo-
rem, we have to estimate a posterior PDF). This PDF is usu-
ally represented using statistical moments or an ensemble of
model states and searching for estimators like mean, mode
or maximum likelihood. In the case of the EnKF, since the
size of the ensemble is limited, it is difficult to obtain a very
accurate representation of the PDF in high dimensional prob-
lems (Evensen, 2007). We restrict ourselves to finding a good
estimate for the mean of the PDF. In the case of the EnKF,
the ensemble mean and covariance are presumed to fully de-
scribe the PDF of both the prior and assimilated fields which
are assumed to be Gaussian; thus the solution becomes com-
putationally feasible.

The analysis equation which allows us to update each en-
semble member is written as:

9a
i =9 f

i +Pf
eH

T
(

HPf
eH

T
+R

)−1(

d−H9 f
i

)

(2)

where9 f
i represents an ensemble memberi (model state)

(“f” stands for forecast, “a” for analysis),d is the vector of
observations available at the time of analysis,H represents
the linear version of the observation operator which permits
the projection from the model space onto the observation
space,Pf

e is the forecast covariance error matrix,R is the
observation covariance error matrix and

Ke= Pf
eH

T
(

HPf
eH

T
+R

)−1
(3)
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is known as the Kalman gain matrix, where “T” refers to the
transpose of a matrix. The “best estimate” is calculated as a
mean over the ensemble members using the formula (withN

the ensemble size):

9a=
1

N

N
∑

i=1

9a
i (4)

And the analysed covariance error matrixPa as the covari-
ance over the ensemble:

Pa
e=

1

N −1

N
∑

i=1

(

9a
i −9a

)(

9a
i −9a

)T
(5)

The same formula is used for the forecast covariance error
matrix (Pf

e) using9 f
i instead9a

i (and9 f instead9a).
The ensemble

(

9 f
i

)

i=1,N
, whose mean is the current state

estimate, is updated in the analysis step (Eq. 2) taking
into account all knowledge about the error statistics (in the
model, Pf

e, and in the measurements,R). The aim here is
to transform the forecast ensemble into an analysis ensem-
ble

(

9a
i

)

i=1,N
with appropriate statistics. The key of this

method is the use of an ensemble to get the forecast/analysis
covariance matrices (see Eq. 5).

They are two ways to treat observations in the EnKF: one
consists in adding perturbations to them according to the ob-
servational error in order to obtainN vectors of measure-
ments(d i)i=1,N (N is the ensemble size). In this case, in
Eq. (1), we will used i instead ofd to update each mem-
ber of the ensemble (details in Burgers et al., 1998). In
this manner, we avoid the loss of the ensemble spread af-
ter assimilation. An alternative is to use a Square Root Fil-
ter formulation (Maybeck, 1979). This formulation avoids
the loss of positive definiteness of the error covariance matri-
ces. It was demonstrated that the elimination of the sampling
error associated with the perturbed observations makes the
EnSRF (Ensemble Square Root Filter) more accurate than
the EnKF for the same ensemble size (Whitaker and Hamill,
2002; Sakov and Oke, 2008). This is the reason for selecting
the square root formulation in our study (we use the same
formulas and notations as in Evensen, 2004).

4.2 Set-up of the assimilation experiments

In this work, we selected the Ensemble Square Root Kalman
Filter in order to implement an assimilation system in the
RCTM CHIMERE at a continental scale. We allow the
model to contain errors, the model error being represented
only by the perturbations added to the ozone model field, and
use the information both from observations and the model to
improve the actual model state. In the configuration applied
in this study, the state vector contains the concentrations for
all the chemical species in each grid cell. The focus here is
on the state estimation rather than on parameter estimation.

There are several methods to set-up an ensemble, but no
unified theory has been developed yet, at least for chemistry-
transport simulations (Galmarini et al., 2004). Ensembles

can be derived from a single model while perturbing model
parameters (Beekmann and Derognat, 2003) or numerical
and physical parameterisations (Mallet and Sportisse, 2006).
An alternative could be to select the ensemble from a long
model simulation or just to perturb a set of initial conditions.
In this study, the initial ensemble was created by applying
3-dimensional “pseudo-random” perturbations to a reference
run. These perturbations were taken from a Gaussian distri-
bution with zero mean, unitary variance and a Gaussian spa-
tial covariance with a fixed decorrelation length (Evensen,
1994) in order to obtain a 2-dimensional field. Given two
such pseudo-random fields for two distinct layers, a new
couple of fields vertically correlated with a specific covari-
ance between layers can be generated (Eqs. A13–A14 from
Evensen, 1994). This procedure is applied for the 17 cor-
related perturbations fields corresponding to the model lay-
ers. The 3-dimensional perturbation field obtained after this
procedure is characterised by a decorrelation length fixed
at 200 km in the horizontal and at 1 km in the vertical, fol-
lowing the comparisons between a model reference run and
ground-based/MOZAIC observations, presented in Boynard
et al. (2010). The amplitude of perturbations was fixed at
10 % of the simulated ozone concentrations in each grid cell.
Perturbations were applied each 3 h during the spin-up pe-
riod of 24 h, and then during the whole assimilation period.
During the one day forecast periods, between two analyses,
these perturbations accumulated to give a dispersion of the
ensemble from the mean varying between 17 % and 25 %.
This is consistent with the model error statistics established
by comparison with surface and free tropospheric ozone ob-
servations (Honoŕe et al., 2008). No temporal correlation was
used in this configuration (i.e. white noise was assumed).

The errors in the observations were grouped (representa-
tiveness and instrumental error) in theR matrix, whose di-
agonal is filled with the results obtained during the inversion
procedure (Eremenko et al., 2008). We consider that there is
no error correlation between different satellite observations
used simultaneously in the assimilation (R is diagonal). This
is certainly a simplification, but the degree of horizontal error
correlation is unknown. However, only a limited set of satel-
lite observations is used within the adopted localisation pro-
cedure (see below). We see that in our case, the observation
error of the 0–6 km ozone column is about 16 % on the aver-
age over the pixels available for the whole month (see Fig. 2b
with the monthly average relative errors). In the retrieval pro-
cedure the diagnosed error is not temporally correlated, thus
we do not consider such a correlation in our system.

An ensemble with a limited number of members cannot
estimate accurately the forecast error across the entire state
space due to spurious error correlations; therefore it is better
to restrict the new information provided by the measurement
to a local neighbourhood. In a local region, the ensemble
size may be sufficient to represent a large portion of the state
uncertainty (Szunyogh et al., 2005). “Localisation” has be-
come a very widely used technique to filter out the spurious
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long-range correlations, and increase the rank of the forecast
covariance matrix. In particular, the most used technique in
assimilation is distance based localisation. This method re-
quires the existence of some concept of distance between a
state vector element and an observation (Sakov and Bertino,
2010). In complex multivariate models, “even the appropri-
ate distance between spatially and temporally collocated ob-
servations and state variables becomes unclear when the ob-
servation and state are of different types” (Anderson, 2007).
In our case, this problem was simplified because we use the
concept of distance only in the Euclidean sense (as a function
of geographical coordinates) between an analysed grid point
and an observation location.

A first method of localisation was described in
Houtekamer and Mitchell (1998). They limit the influence
of an observation on the analysis to a surrounding local re-
gion using a cutoff radius beyond which covariances be-
tween variables are assumed to be zero, also called “covari-
ance localisation”. Another localisation method, scheme-
independent, is “local analysis” or localisation in model grid
space which uses “local approximation of the state error co-
variance for each updated state vector element by building a
virtual local spatial window around this element” (Sakov and
Bertino, 2010).

We apply here a “local analysis” in order to avoid spuri-
ous correlations in the forecast ensemble, which are intro-
duced by the perturbation method for finite ensemble sizes,
and which do not have any geophysical reality. The basic
idea of this method is to perform the analysis on a given grid
point using the observations within a local region centred at
that point and this analysis is performed grid point by grid
point. The radius of this region was fixed at 200 km, corre-
sponding to the decorrelation length in the horizontal pertur-
bations applied (following Boynard et al., 2010). The max-
imum number of observations to be assimilated was limited
to 30 pixels. This parameter was subject to sensitivity tests
(see later). No vertical localisation was applied. In certain
cases, this method can lead to discontinuities in the analysis
when an observation is taken into account into a local win-
dow and not in the next one, when we move from updating
one state vector element to another, but this problem is be-
yond the scope of this study. Note however that this unsuit-
able occurrence has been addressed in Hunt et al. (2007).

To assimilate satellite data, we have to be able to project
the vectors from the model space onto the observation space,
calculate the innovations (differences between the observa-
tions and the simulated fields projected in the observational
space) and reproject this information onto the forecast model
space. All these operations are achieved by constructingH,
the observation operator. The formula used is:

H
(

ψ f
i

)

= S ·A ·L

(

ψ f
i

)

(6)

Making observations and simulated fields comparable first
implies performing a vertical interpolationL (in order to

have the same number of vertical layers for the model and
for the IASI retrieval, one layer for each km up to 12 km).
The second operation is a convolution by the averaging ker-
nel A. As already mentioned, the averaging kernel matrix
provides the information which, if properly applied to a par-
ticular in situ profile data, transforms that profile in order to
have the same resolution and a priori dependence as the IASI
retrievals. Note that in the assimilation case, adding the a pri-
ori profile is not needed (Rodgers, 2000) because the a priori
was removed from the IASI columns before, therefore only
the first term in Eq. (1)(Axm) is required. The last step for
constructingH is the integration on the vertical (S), up to
6 km, in order to obtain a scalar value corresponding to the
column value.

There are two remaining parameters to discuss: the en-
semble size and the local patch size (maximum number of
pixels used in the assimilation step for each grid cell); the
sensitivity tests described in the next subsection will clarify
the choices made for these parameters in the present study.

4.3 Sensitivity tests

In this subsection, we briefly describe the sensitivity exper-
iments performed for the two parameters considered as the
most influential: the ensemble size, which controls the ac-
curacy used for the evaluation of the model prediction co-
variance error and the local patch size which represents the
maximum number of pixels used in the assimilation step and
located within 200 km of the analysed grid cell. Closely
related to the last parameter is the horizontal decorrelation
length. As this parameter was tested and fixed following the
results obtained by Boynard et al. (2010) we choose to keep
it constant in order to avoid higher CPU requirements. The
tests were conducted for three days (17, 18 and 19 July 2007)
when the CHIMERE model simulated high ozone concentra-
tions over Central and Eastern Europe. The strong gradient
of the simulated ozone field together with a large coverage
from the IASI instrument for these three days are two impor-
tant reasons for choosing this time period.

The ensemble sizes tested were 10, 20, 40 and 80. The
increase of sample numbers slightly improves the forecast
scores (see Table 1) but we can see that results are very simi-
lar. We calculated the RMSE between the simulated columns
and the IASI data for each test and we compared also with the
RMSE of a reference run (without assimilation); the modest
improvements shown in Table 1 are likely due to the satu-
ration of the errors in the assimilation system. It appears
that increasing the ensemble size will not improve the as-
similation system accuracy: about 40 members (therefore
40 CHIMERE simulations) were found to be sufficient for
a good assimilation; therefore this is the size retained in this
study. As for the local patch size, its increase from 10 to
20 pixels slightly improved the quality of our analysis and
then the increase from 20 to 30 pixels leads to a small loss of
precision (values are very close, differences at second digit).
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Table 1. Root mean square error (expressed in DU) calculated for
the sensitivity tests performed on 17, 18 and 19 July 2007. Tests
of ensemble sizes are presented in different rows, maximum local
patch sizes (10, 20 and 30 pixels) in different columns. The first
row of the table shows the root mean square error calculated for a
reference run “without assimilation” (REF). The lowest value of the
RMSE is highlighted in bold.

RMSE (DU) 10 pixels 20 pixels 30 pixels

REF 5.40 5.40 5.40
10ens 3.01 2.97 2.98
20ens 2.96 2.94 2.96
40ens 2.95 2.94 2.94
80ens 2.95 2.92 2.93

Finally, the largest value tested (30) was used in the simu-
lations presented here. As an example of assimilation for
this testing period, in Fig. 4, we plot a comparison between
the mean ozone columns before assimilation (left panel), the
IASI data (central panel) and the mean ozone columns af-
ter assimilation (right panel) for the 17 July 2007 using an
ensemble of 40 members and 30 assimilated pixels. Assim-
ilation increases the spatial correlation coefficient (between
forecast field and IASI data compared to analysis field ver-
sus IASI data, always for 0–6 km columns) from 0.06 to 0.23
(following a linear fit for the scatter plots, not shown). As-
similation results show a large negative correction especially
in the Eastern part of the domain. The situation chosen here
was special, due to the presence over Eastern Europe of a
large anticyclonic system with enhanced temperatures and
ozone levels for this day.

5 Results

5.1 General results

Using the assimilation system described above we perform a
one month simulation, for July 2007, and we assimilate the
tropospheric ozone columns (0–6 km) daily at 09:00 a.m. We
start the results section, with some general statistics which
help us to evaluate quantitatively the corrections performed
on the ozone field using the IASI data (in terms of ozone
columns, therefore expressed in Dobson Units).

In Fig. 5 we compare the mean ozone columns before as-
similation (left panel) with IASI columns (central panel) and
the mean ozone columns after assimilation (right panel) over
the entire domain and over the whole month. For these com-
parisons (as already for those presented in Fig. 4), averaging
kernels are applied to the collocated model profiles (in order
to remove the dependency of the comparison on the a pri-
ori ozone profile information used in the retrieval) and the
same a priori was added for the three data sets (details in the

set-up Sect. 2, Eq. 1). From this figure, we can see that the
model largely overestimates partial columns in the northern
part of the domain. As a consequence the mean European
north to south gradient observed by IASI is not captured by
the model. This feature is consistent with the results obtained
with an ensemble of models by Zyryanov et al. (2011). As a
result of assimilation, the large-scale structures in the ozone
distribution are as expected more consistent with the IASI
data. Except for the large negative correction in the northern
half of the domain, the corrections are more pronounced in
the southern half of the domain over Spain, Italy and Eastern
Europe where the CHIMERE model overestimates the ozone
columns.

In a second step, we performed self-consistency diagnostic
tests. OmA (observations minus analysis) and OmF (obser-
vations minus forecast) differences were computed for every
day of the month (for each morning overpass). Technically,
this evaluation consists in a comparison between the inno-
vations (defined as observations minus projected forecasts in
the observational space – last parenthesis in Eq. 2), called
OmF and the difference between observations and projected
analysis in the same space, called OmA. Daily, OmA and
OmF values for individual grid cells were processed over
the whole model domain to calculate the bias (mean bias er-
ror – MBE) and the RMSE/RMSED (root mean square error
and/or debiased). The formulas used for these performance
indices are:

MBE =
1

n

n
∑

i=1

(Oi −Pi) (7)

RMSE=

√

√

√

√

1

n

n
∑

i=1

(Oi −Pi)
2 (8)

RMSED=

√

√

√

√

1

n

n
∑

i=1

(

Oi −Pi −
(

Ō − P̄
))2

(9)

where Pi and Oi represent the simulated (predicted) and
measured concentrations andP̄ , Ō the means calculated for
all n model grid cells with pixels available at timet .

The temporal evolution of these indices is plotted in Fig. 6.
Except for some gaps due to the lack of the IASI data, we
can notice the same linear shape of the RMSE/bias of the
mean of the ensemble columns after analysis (step) versus
the IASI columns, which shows rather constant values over
the whole period. Note that the large bias/RMSE reduction
for 1 July is characteristic for the first assimilation time step
performed, since the model was not constrained prior to this
date. In terms of gain with respect to forecast we notice a
reduction of 1.5 DU for the RMSE, 1 DU for RMSED and
2 DU for the bias, nearly removing the bias. Thus, the as-
similation system is very efficient in removing bias and also
partly improving the variability of the quadratic error (reduc-
tion of the RMSED when comparing green and red curves).
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Fig. 4. 0–6 km ozone partial columns (Dobson Units) from the mean of the forecast ensemble (i.e. before assimilation; left panel), IASI
(central panel) and the mean of analysis ensemble (i.e. the ensemble after assimilation; right panel) for the 17 July 2007 (at 09:00 a.m.). The
white points on the maps correspond to the missing pixels (clouds or bad inversion) (color scale varies from black, representing relatively
low values, to pink representing relatively high values).

Fig. 5. 0–6 km ozone partial columns (Dobson Units) from the mean of the forecast ensemble (i.e. before assimilation; left panel), from IASI
retrievals (central panel) and the mean of analysis ensemble (i.e. the ensemble after assimilation; right panel). Values are averaged over the
whole month at 09:00 a.m. The white points on the maps correspond to the missing pixels (clouds or bad inversion) (color scale varies from
black, representing relatively low values, to pink representing relatively high values).

The remaining RMSE of analysis is consistent with the IASI
error shown in Fig. 1 (about 2 to 2.5 DU). Thus, these first
error statistics show a satisfying behaviour of the assimila-
tion system. We can note that the mean bias observed for the
monthly mean appears to be a systematic feature. It is likely
that chemical boundary conditions (BC) are mainly respon-
sible for this since it largely controls simulated free tropo-
spheric concentrations. The bias build up (of about 2 DU)
between two assimilation steps (i.e. 24 h) may be partly due
to the advection of biased BC inside the domain.

5.2 Evaluation of the data assimilation system

In a second step, we quantified how much the assimilation
procedure improved the forecast of IASI observations for the
next day after assimilation, with respect to a free model run
without assimilation (called reference model run). IASI ob-
servations used for this evaluation have not been employed

prior for assimilation. However, it is difficult to prove that
data used for assimilation and data used for evaluation are
strictly speaking independent, because the temporal correla-
tion of the errors is not known. This time, the evaluation con-
sists in a comparison between the innovations (OmF) and the
difference between observations and the reference run. We
called the latter quantity OmRef. The performance indices
are presented in Fig. 7 as an integrated quantity column 0–
6 km (so the unit is DU) for the four quadrants of the domain
(A for north-west, B for north-east, C for south-west and D
for south-east). They show that, at least for the second ten
days, when the number of available pixels was higher (see
Fig. 3b), the filter allows an improvement in ozone columns,
especially on the eastern half of the domain; thus we obtained
an averaged (over the entire month) gain in bias of 1 DU for
the zone B and 1.5 DU for the zone D for the whole month.
The better improvement in zone D in the south-eastern part of
the domain can be explained by two facts: first, more pixels
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Fig. 6. Temporal evolution of the general statistics RMSE, RMSED
and MBE calculated for the data described in Fig. 5: monthly aver-
aged mean of the ensemble ozone columns (forecast and analysis)
versus the IASI partial columns for the whole month. The symbols
are as follows: diamonds for the RMSE “forecast” or “analysis”
(dark blue or magenta respectively); circles for the debiased RMSE
“forecast” or “analysis” (green or red respectively); and triangles
for the MBE (violet or brown respectively). The unit measure is
DU.

were available for the southern part of the domain because of
more cloud free conditions (see Fig. 3b) and second, most air
masses present in this area have undergone westward trans-
port and spent several days in the simulation domain (cf. back
trajectories presented in Foret et al., 2009). It is likely that
the initial gain in bias is lost, especially for the quadrant A
(north-west), because air masses which have not benefited
from assimilation (coming from outside the domain), are ad-
vected over the domain within the one day time span between
assimilation and evaluation. We present also the RMSED
(the red and blue curves); these results show no improvement
in forecast except for the zone D where a slight reduction of
0.3 DU was found. Again, for the quadrants A and B where
also the bias was not improved much, this can be explained
by advection of fresh air masses into the domain during the
one day time span between assimilation and evaluation. For
quadrant D, it is likely that assimilated information is not
transported faithfully to the correct model grid cell one day
later, thus RMSED does not improve much, unlike the bias.
To test this hypothesis, a scale analysis of the model improve-
ment due to assimilation would need to be conducted, but this
is beyond the scope of our paper.

We next evaluate the effect of the assimilation on the ver-
tical ozone distribution. For this, we first analyze the verti-
cal distribution of corrections (with respect to the free run)
in terms of 2-dimensional fields. Figure 8 presents the cor-
rection maps (ozone concentrations expressed in parts-per-
billion i.e. ppb) performed at several altitudes (surface, 1, 5
and 9 km) for the same date (here for 17 July 2007) in order
to verify the consistency of our corrections (with the Fig. 4).
The comparison reveals the existence of a large-scale correc-

tion over the Eastern part of the domain extending from the
Baltic Sea to Southern Italy, as already mentioned in Sect. 4.3
when we compared the 0–6 km columns for the same date
(Fig. 4). We notice that the corrections performed at the sur-
face are generally small and that the same structure, a little
more pronounced, is observed at 1 km altitude. At 5 km, the
negative corrections occur again over the eastern part of the
model domain, but in addition also over a region reaching
from Denmark to Spain. These zones are consistent with the
differences between the ensemble mean and the IASI partial
columns (see Fig. 4). When we reach the 9 km altitude, the
corrections are smaller than at 5 km, but the structure of the
field remains consistent with differences observed at other al-
titudes. As expected, this altitude dependence of the correc-
tions is consistent with the vertical structure of the averaging
kernel. As shown in Fig. 3a, the maximum sensitivity of IASI
0–6 km partial columns occurs between 4 and 5 km height.
This information is used in the Kalman gain matrix (via the
observation operatorH, Eq. 2) which projects the innova-
tions from the observation space into the model space. The
negative innovations (for partial columns) lead to negative
corrections at surface in the eastern part of the domain, but
not for the western part. This is likely due to a larger sensitiv-
ity of IASI observations to ground for the region over East-
ern Europe where surface temperatures (and thus the thermal
contrast with the atmosphere) were high during this day.

Keeping these results in mind, we analyze the impact of
the ozone correction on the vertical ozone profile. For this,
we averaged for each quadrant of the domain and over the
whole month of July the vertical profile for a run with as-
similation, called EnSRF and a reference run without assim-
ilation called Ref (shown in Fig. 9). First, we can notice a
large difference between the vertical profiles simulated by
the model for the four zones (Ref – blue curves on Fig. 9).
Simulated ozone levels in the reference simulation are larger
in the south-eastern quadrant of the domain especially in the
lower free troposphere due to persistent anticyclonic condi-
tions and transport of polluted air masses coming from West-
ern Europe (Roelofs, 2003). We remark also the absence of
a vertical gradient in the first two kilometres for the same re-
gion and more variability in the Eastern part of the domain.
Second, as expected from the discussion of the corrections of
the 0–6 km columns, corrections are always negative (Fig. 9)
and they are strongest in the 2–6 km region, which corre-
sponds to the largest IASI sensitivity (for the four regions
the maximum AVK is reached at approximately 4–4.5 km al-
titude shown in Fig. 3a). Above about 10 km, the correc-
tions become negligible. We can also see that the correction
at the surface remains significant. This is an important re-
sult, because it implies that IASI observations can constrain
surface ozone levels. In addition to direct correction due to
analysis, vertical transport of assimilated information affects
these profiles, in particular downward transport increases the
differences at the surface level. The magnitude of the cor-
rections, in the free troposhere and at the surface, is spatially
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Fig. 7. Temporal evolution of the general statistics RMSED and MBE calculated for the differences (observations minus model/assimilation
forecasts) for the four quadrants of the domain (defined in Fig. 2). The statistics were calculated for two types of differences called OmF
(i.e. innovations) and OmRef (corresponding to the model reference run). The symbols are as follows: diamonds for the debiased RMSE
“forecast” or “reference” (red or blue respectively); and triangles for the MBE “forecast” or “reference” (brown or violet respectively). The
unit measure is DU.

modulated: in the western part of the domain, the corrections
are smaller than in the eastern part (as was already noted for
the columns). At 4 km, the mean decrease was of 7.4 ppb for
zone A, 11.4 ppb for zone B, 6.6 ppb for zone C and 12.4 ppb
for zone D. At surface level, these values were still 2.5 ppb
for zone A, 6 ppb for zone B, 4.6 ppb for zone C and 7 ppb
for zone D. Thus, for the Eastern part of the domain (zones
B and D), surface corrections are roughly about half of those
at 4 km. This important impact of the assimilation of IASI
observations on surface ozone will be further analysed in
Sect. 5.4 (evaluation with surface ozone data).

5.3 Improvement of vertical ozone distribution

In order to evaluate the impact of the assimilation procedure
on the vertical ozone distribution, we use vertical ozone pro-
files from the MOZAIC project (Thouret et al., 1998) and
vertical ozone soundings as independent validation data sets.
The first data set used for validation is MOZAIC data from
aircraft taking off or landing in Frankfurt (50◦ N, 8.7◦ E),
where 83 profiles were available over July 2007. Ozone lev-
els simulated by the CHIMERE model (with or without as-
similation) considered along the MOZAIC flight track were
calculated horizontally by bilinear interpolation (using the
neighbouring grid cells) and vertically by linear interpola-
tion every 100 m. As shown in Fig. 10, the analysis (red
curve) produces a decrease in bias of about 6 ppb in the free
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Fig. 8. 2-dimensional maps with corrections performed at various altitudes for 17 July 2007. The four contour plots are the corrections
(concentration after assimilation minus concentration before assimilation) at(a) surface,(b) 1 km, (c) 5 km and(d) 9 km altitude. The ozone
concentrations are expressed in ppb (color scale varies from violet representing relatively low values, to red representing relatively high
values and the min/max values are−40/40 ppb).

troposphere when compared with observations (blue curve).
Within a 2 to 5 km height range nearly all bias is removed.
This altitude range corresponds to the maximum sensitivity
of the IASI instrument. However, even at the surface, the
bias is reduced, both due to a larger than zero sensitivity to
surface ozone, and due to downward transport of assimilated
information (as described in Foret et al., 2009). Therefore,
we can conclude that, for this location, the constraints in-
duced by IASI data (0–6 km columns) on the model outputs
lead to a significant bias reduction in ozone estimate.

We selected also for validation the sonde measurements
provided by the WOUDC (World Ozone and Ultraviolet ra-
diation Data Centre). For comparison purposes, we interpo-

lated the soundings every 100 m and then we compared them
to the model estimated profiles (reference run or analysed
one) for which we performed, like for the MOZAIC flights,
a bilinear interpolation in the horizontal plane and linear on
the vertical every 100 m. For the five locations available:
De Bilt, Lindenberg, Barajas, Payerne and Uccle, we anal-
ysed 46 profiles. The coordinates and the number of pro-
files available for each location are shown in the Table 2.
The first remark is that the model profiles are smoother than
the observed ones and this is due to the limited model ver-
tical resolution. Second, at two stations, Barajas and Pay-
erne (not shown), which are situated on the southern half
of the domain, and where the model initially overestimates
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Fig. 9. Comparison between monthly mean ozone vertical profiles (surface to 12 km) for the four quadrants of the domain. The profiles were
drawn from two distinctive runs: one with assimilation, called EnSRF (red curve) and the other one, free run “without assimilation” called
Ref (blue curve); the averages were calculated first over the corresponding grid cells and then over the month. The error bars correspond to
the monthly standard deviation of the vertical profiles. The unit measure for the vertical profiles is ppb.

Table 2. Geographical characteristics of the sounding sites as well as the number of profiles available for the study. The sondes used in this
paper are taken from the World Ozone and Ultraviolet Data Centre (WOUDC) (http://www.woudc.org).

Name Country Time Coordinates Height (m) # of profiles

Barajas Spain 11:00 UT 40.47◦ N, 3.58◦ W 631 4
De Bilt The Netherlands 11:00 UT 52.1◦ N, 5.18◦ E 4 4
Lindenberg Germany 11:00 UT 52.21◦ N, 14.12◦ E 112 12
Payerne Switzerland 11:00 UT 46.8◦ N, 6.95◦ E 491 14
Uccle Belgium 11:00 UT 50.8◦ N, 4.35◦ E 85 12

Atmos. Chem. Phys., 12, 2513–2532, 2012 www.atmos-chem-phys.net/12/2513/2012/
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Fig. 10. Comparison between the averaged vertical profile of
MOZAIC aircraft (average calculated over 83 profiles) (blue curve)
with the mean profile calculated over the analysed ensemble, called
EnSRF, (red curve) and a mean profile drawn from a reference run
“without assimilation”, called CHIMERE (green curve). The error
bars correspond to the standard deviation of the mean.

the tropospheric ozone, bias is improved, while for the three
other sites, situated on the northern half of the domain, the
analysis underestimates the ozone concentrations. However,
for these latter soundings the reference run already exhibits a
good agreement (not shown). Nevertheless, the lack of data
at several sites does not allow for firm conclusions on the
geographical distribution of the assimilation performance.
If we average over the 46 profiles available, we can see in
Fig. 11 the lack of improvement (compare red curve with the
blue one) especially in the free troposphere.

To conclude, the independent data sets used for validating
the assimilation system show different behaviour. We saw
that, when comparing with soundings, a slight deterioration
of bias is observed. The reference being already close to the
measurements, the analysis performed with the EnSRF does
not provide any gain (in the average) in the free troposphere.
On the contrary, the comparison with MOZAIC data shows
a strong improvement when assimilating IASI ozone partial
columns and a bias reduction of about 6 ppb (12 %) in the
free troposphere.

5.4 Improvement of surface ozone

In spite of a theoretical low sensitivity of IASI measurement
to the surface (cf. AVK on Fig. 3a), it is important for air
quality concerns to quantify the impact of IASI assimilation
on the improvement of the surface ozone distribution, and
this is the case of Europe, where it has been shown that down-
ward transport of air masses could transfer a part of informa-
tion carried by the IASI measurements to the surface (Foret et
al., 2009). The potential improvement of surface ozone due
to the assimilation of IASI data was tested against the ob-
servations provided by the Airbase (the European Air quality
dataBase) network. For 2007, we have 703 ground-based

 

 

Fig. 11. Same comparison as in Fig. 10 using an average profile
calculated for the 46 soundings available (for information about the
five locations, see Table 2).

stations available. These stations were classified following
Flemming et al. (2005) in four groups. The classification is
based on the medians of daily average concentration, relative
daily variation and altitude. We identified four classes; their
sizes and characteristics are listed in Table 3. The most repre-
sented class contains stations which exhibit high diurnal vari-
ability (called peri-urban, P) and the second class in order of
size is represented by the rural stations (R). The third one in
order of size groups the stations which exhibit low variability
(M) and finally, the fourth one is represented by the ground
stations situated at altitude (above 900 m). In Table 4 we
present the monthly morning and afternoon (09:00 a.m. and
03:00 p.m. UT) averages of the RMSE/bias (of assimilation
run and the reference run against measurements) at the sur-
face in absolute values (ppb) for all the stations. 09:00 a.m.
corresponds to the hour of IASI overpass, 03:00 p.m. is close
to the afternoon surface ozone maximum. As we can see, for
all the groups we obtain a slight decrease of the RMSE/bias
of the analysis compared to reference at 09:00 a.m., except
for the bias at 03:00 p.m., where the decrease is substantial.
Thus information introduced into the system in the morning
affects surface ozone especially in the afternoon, likely due
to rapid mixing within the convective boundary layer, and
therefore significantly reduces the bias in the afternoon. We
also evaluated the number of stations which improve their
RMSE (more than 95 %, at 09:00 a.m. and 86 % at 03:00
p.m. see Table 5) and the number of stations which improve
their bias (98 % in the morning and 89 % in the afternoon as
shown in Table 6). As for the absolute values, we obtained
an averaged reduction of the root mean square error of about
3 ppb at 09:00 a.m. and 2 ppb at 03:00 p.m., while for the
bias the mean reduction is 3.9 ppb at 09:00 a.m. and 4.15 ppb
at 03:00 p.m. To conclude, for the two selected times, the
filter shows RMSE/bias reductions, a sign that the IASI tro-
pospheric columns constitute an efficient direct or indirect
constraint to correct the simulated surface ozone concentra-
tions.
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Table 3. Classification of ground-based stations (function of diurnal
variability): 4 classes with the number of sites available (following
Flemming, 2005). The fourth class (ALT) is special: it groups to-
gether all the ground stations situated at altitude (above 900 m).

TYPE VARIABILITY #

M low 135
P high 266
R medium 222
ALT – 80

Table 4. Monthly averaged statistics RMSE and bias (in ppb) when
comparing a run with assimilation (EnSRF) and a reference one
(Ref) against the measurements provided by the ground stations,
differentiated for each type of station (as indicated by Table 3) at
09:00 a.m. and 03:00 p.m.

PPB RMSE RMSE bias bias
EnSRF Ref EnSRF Ref

M 09:00 a.m. 10.60 13.11 −6.59 −10.46
M 03:00 p.m. 10.02 12.01 −3.70 −8.66
P 09:00 a.m. 13.12 16.12 −9.42 −13.70
P 03:00 p.m. 10.55 13.00 −3.74 −9.51
R 09:00 a.m. 11.43 14.11 −7.75 −11.50
R 03:00 p.m. 10.29 12.42 −3.58 −8.73
ALT 09:00 a.m. 15.89 19.23 −11.89 −16.70
ALT 03:00 p.m. 11.08 12.86 −1.36 −7.51

In these spatially averaged results, large spatial differences
occur. The difference between RMSE after and before assim-
ilation for all surface stations (in ppb) is presented in Fig. 12.
The spatial pattern of corrections shows a clear west-east gra-
dient, better performances being observed in the east, and
especially over Italy, with RMSE reductions of more than
5 ppb. It should be noted that the type of stations (represented
by different symbols cf. Fig. 13) does not impact the result.
This may be related to the fact that assimilated information is
more efficiently transported from the lower free troposphere
to the surface over the south-eastern domain part where sub-
siding anticyclonic conditions are generally observed (Foret
et al., 2009). It may also be related to the fact that the bias
in the reference model is especially high over these regions
and the mean DOF for the same region (independent infor-
mation) is also higher than elsewhere (see the Fig. 2).

To conclude, at the surface, almost all the AIRBASE sta-
tions tested exhibit significant improvements in terms of root
mean square error and bias, a sign that the IASI data can con-
stitute an important indirect constraint to correct simulated
surface ozone concentrations even if the instrument shows
low sensitivity at the ground.

Table 5. Number of stations (in %) for which the root mean square
error (RMSE) after analysis is reduced, the RMSE calculated as in
Table 4. The total number of sites for each type is indicated in the
first line.

nr % M (135) P (266) R (222) ALT (80)

09:00 a.m. 94 % 98 % 95 % 94 %
03:00 p.m. 86 % 90 % 90 % 76 %

Table 6. Number of stations (in %) for which the mean bias after
analysis is reduced, the mean bias calculated as in Table 4. The total
number of sites for each type is indicated in the first line.

nr % M (135) P (266) R (222) ALT (80)

09:00 a.m. 97 % 99 % 99 % 96 %
03:00 p.m. 90 % 93 % 94 % 81 %

6 Conclusions

In this study, an assimilation experiment based on the EnSRF
has been performed in order to investigate and evaluate the
potential of the IASI ozone partial columns to better repre-
sent the 3-dimensional distribution of the ozone fields over
Europe. To our knowledge, this is the first assimilation ex-
periment conducted using IASI data in order to improve the
estimate of the ozone fields, especially in the free and lower-
most troposphere.

We have quantified the impact of assimilation using self-
consistency tests and evaluation against all available inde-
pendent data for the period of the study. It has been shown
that DA of 0–6 km ozone columns from IASI is improving
simulated ozone fields in the middle and lower troposphere.
These corrections with respect to the free run were more pro-
nounced in the South-Eastern part of the domain, up to 8–
9 ppb in the free troposphere, likely due to (1) the transport
of corrections from the Western part of the domain associ-
ated to the general circulation pattern (i.e. dominant western
circulation) and (2) a longer residence time of air masses in
this area due to persistent anticyclonic conditions over the
Mediterranean basin (Foret et al., 2009). It may also be re-
lated to the fact that the bias in the reference model was es-
pecially high over these regions and the mean DOF for the
same region (independent information) is also higher than
elsewhere. Surprisingly, the impact of IASI columns assim-
ilation on surface ozone is quite large which is not obvious
a priori considering the low sensitivity of TIR (Thermal In-
fraRed) measurements at the surface. The reduction of the
errors at the surface is more important in the afternoon than
in the morning, pointing out the fact that the ozone infor-
mation introduced into the system needs some time to be

Atmos. Chem. Phys., 12, 2513–2532, 2012 www.atmos-chem-phys.net/12/2513/2012/



A. Coman et al.: Assimilation of IASI partial tropospheric columns 2529

Figure 12. Difference RMSE_EnSRF minus RMSE_Ref calculated using two simulations

Fig. 12.Difference RMSEEnSRF minus RMSERef calculated us-
ing two simulations: one with assimilation, called EnSRF and the
second one without assimilation, called Ref (against measurements)
at 09:00 a.m. calculated over the month July 2007, for each of 703
ground-based stations from the AIRBASE network. Different sym-
bols were used for each class type: circles for the ALT stations,
diamonds for the M, stars for the P and triangles for the R (see the
four types of stations in Table 3). The color scale varies from vio-
let representing relatively low values, to red representing relatively
high values and min/max values from−7 ppb to 5 ppb.

transported downward. Corrections are stronger again in the
south-eastern part of the European domain. Even if the ma-
jor aim of this paper was not a geophysical analysis of pro-
cesses determining the tropospheric ozone distribution over
Europe, our results confirm the importance of the downward
transport (by subsidence, and mixing in the boundary layer)
of tropospheric ozone over the Eastern part of the Mediter-
ranean basin.

Both error reductions by IASI data assimilation in free
tropospheric and surface ozone over Europe and in partic-
ular the Mediterranean are important results in the perspec-
tive of monitoring/understanding of trends and variability of
Mediterranean tropospheric ozone concentrations as well as
for air quality concerns. Especially, in the context of GMES
(Global Monitoring for Environment and Security) and the
set up of the future monitoring systems dedicated to AQ,
these results show the importance of using the IASI mea-
surements to obtain more accurate ozone analysis even at
the surface. Improvement of forecast has still to be demon-
strated. The use of these data for operational and assimila-
tion/ forecast context shall be investigated in the framework
of the GMES/MACC project.

To further explore the potential of IASI data, many im-
provements can be imagined and will be pursued in future
studies. First, an expected improvement would be the con-

struction and use of a physically sound ensemble by perturb-
ing various parameters of the model (emissions, boundary
conditions, meteorology, etc.). Second, the coupling of IASI
data assimilation with that of in situ observations, i.e. com-
bining complementary information sources, is expected to
improve the system performance. Finally, longer assimila-
tion periods would be beneficial in order to sample major
ozone pollution episodes.
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Höpfner, M., Boynard, A., Clerbaux, C., Payan, S., Coheur, P.-
F., Hurtmans, D., Claude, H., Dier, H., Johnson, B., Kelder, H.,
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