GNU MCSim : bayesian statistical inference for SBML-coded systems biology models - Archive ouverte HAL Access content directly
Journal Articles Bioinformatics Year : 2009

GNU MCSim : bayesian statistical inference for SBML-coded systems biology models

(1)
1

Abstract

Statistical inference about the parameter values of complex models, such as the ones routinely developed in systems biology, is efficiently performed through Bayesian numerical techniques. In that framework, prior information and multiple levels of uncertainty can be seamlessly integrated. GNU MCSim was precisely developed to achieve those aims, in a general non-linear differential context. Starting with version 5.3.0, GNU MCSim reads in and simulates Systems Biology Markup Language models. Markov chain Monte Carlo simulations can be used to generate samples from the joint posterior distribution of the model parameters, given a dataset and prior distributions. Hierarchical statistical models can be used. Optimal design of experiments can also be investigated.

Keywords

Fichier principal
Vignette du fichier
2009-035_post-print.pdf (145.54 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ineris-00961935 , version 1 (20-03-2014)

Identifiers

Cite

Frédéric Y. Bois. GNU MCSim : bayesian statistical inference for SBML-coded systems biology models. Bioinformatics, 2009, 25 (11), pp.1453-1454. ⟨10.1093/bioinformatics/btp162⟩. ⟨ineris-00961935⟩

Collections

INERIS
206 View
277 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More