Skip to Main content Skip to Navigation
Journal articles

Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage

Abstract : The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.
Document type :
Journal articles
Complete list of metadata

Cited literature [43 references]  Display  Hide  Download
Contributor : Gestionnaire Civs Connect in order to contact the contributor
Submitted on : Wednesday, May 21, 2014 - 8:55:00 AM
Last modification on : Thursday, August 4, 2022 - 5:14:39 PM
Long-term archiving on: : Monday, April 10, 2017 - 2:34:58 AM


Files produced by the author(s)




Léa Chancelier, Alpha-Oumar Diallo, Catherine Santini, Guy Marlair, Thibaut Gutel, et al.. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2014, 16 (5), pp.1967-1976. ⟨10.1039/C3CP54225D⟩. ⟨ineris-00963512⟩



Record views


Files downloads