C. J. Barnhart and S. M. Benson, On the importance of reducing the energetic and material demands of electrical energy storage, Energy & Environmental Science, vol.451, issue.4, pp.1083-1092, 2013.
DOI : 10.1039/c3ee24040a

R. S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter, and A. Balducci, Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries, Electrochimica Acta, vol.56, issue.11, pp.4092-4099, 2011.
DOI : 10.1016/j.electacta.2011.01.116

A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé et al., Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance, Journal of Power Sources, vol.195, issue.3, pp.845-852, 2010.
DOI : 10.1016/j.jpowsour.2009.08.056

Y. S. Yun, J. H. Kim, S. Y. Lee, E. G. Shim, and D. W. Kim, Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes, Journal of Power Sources, vol.196, issue.16, pp.6750-6755, 2011.
DOI : 10.1016/j.jpowsour.2010.10.088

G. G. Eshetu, S. Grugeon, S. Laruelle, S. Boyanov, A. Lecocq et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries, Physical Chemistry Chemical Physics, vol.87, issue.5, pp.9145-9155, 2013.
DOI : 10.1039/c3cp51315g

URL : https://hal.archives-ouvertes.fr/hal-00826182

C. L. Campion, W. Li, and B. L. Lucht, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.152, issue.12, pp.2327-2334, 2005.
DOI : 10.1149/1.2083267

B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources, vol.195, issue.9, pp.2419-2430, 2010.
DOI : 10.1016/j.jpowsour.2009.11.048

M. Armand, F. Endres, D. R. Macfarlane, H. Ohno, and B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, vol.16, issue.8, pp.621-629, 2009.
DOI : 10.1038/nmat2448

M. Galinski, A. Lewandowski, I. Stepniak-balducci, S. S. Jeong, G. T. Kim et al., Ionic liquids as electrolytes, Electrochimica Acta, vol.51, issue.26, pp.5567-5580, 2006.
DOI : 10.1016/j.electacta.2006.03.016

P. Wasserscheid, T. D. Welton-21, J. W. Fox, A. B. Gilman, J. R. Morgan et al., Ionic liquids in synthesis, Ind. Eng. Chem. Res, vol.47, pp.6327-6332, 2003.

B. Garcia, S. Lavallee, G. Perron, C. Michot, and M. Armand, Room temperature molten salts as lithium battery electrolyte, Electrochimica Acta, vol.49, issue.26, pp.4583-4588, 2004.
DOI : 10.1016/j.electacta.2004.04.041

A. O. Diallo, C. Len, A. B. Morgan, and G. Marlair, Revisiting physico-chemical hazards of ionic liquids, Separation and Purification Technology, vol.97, pp.228-234, 2012.
DOI : 10.1016/j.seppur.2012.02.016

URL : https://hal.archives-ouvertes.fr/ineris-00961785

C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. Aki, and J. F. Brennecke, Thermophysical Properties of Imidazolium-Based Ionic Liquids, Journal of Chemical & Engineering Data, vol.49, issue.4, pp.954-964, 2004.
DOI : 10.1021/je034261a

P. Andersson, P. Blomqvist, A. Lorén, and F. Larsson, Investigation of fire emissions from Li-ion batteries, 2013. 31, J. Therm. Anal. Calorim, vol.102, pp.685-693, 2010.

P. S. Kulkarni, L. C. Branco, J. G. Crespo, M. C. Nunes, A. Raymundo et al., Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations, Chemistry - A European Journal, vol.37, issue.30, pp.8478-8488, 2007.
DOI : 10.1002/chem.200700965

N. Papaiconomou, J. Salminen, J. Lee, and J. M. Prausnitz, Physicochemical Properties of Hydrophobic Ionic Liquids Containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations, Journal of Chemical & Engineering Data, vol.52, issue.3, pp.833-840, 2006.
DOI : 10.1021/je060440r

S. A. Forsyth, S. R. Batten, Q. Dai, and D. R. Macfarlane, Ionic Liquids Based on Imidazolium and Pyrrolidinium Salts of the Tricyanomethanide Anion, Australian Journal of Chemistry, vol.57, issue.2, pp.121-124, 2000.
DOI : 10.1071/CH03245

S. Passerini, G. B. Appetecchi, and . Bull, Page 15 of 49 Physical Chemistry Chemical Physics 37, pp.540-547, 2013.

L. Magna, Y. Chauvin, G. P. Niccolai, and J. M. Basset, The Importance of Imidazolium Substituents in the Use of Imidazolium-Based Room-Temperature Ionic Liquids as Solvents for Palladium-Catalyzed Telomerization of Butadiene with Methanol, Organometallics, vol.22, issue.22, pp.4418-4425, 2003.
DOI : 10.1021/om021057s

H. Srour, H. Rouault, C. C. Santini, and Y. Chauvin, A silver and water free metathesis reaction: a route to ionic liquids, Green Chemistry, vol.160, issue.51, pp.1341-1347, 2013.
DOI : 10.1039/c3gc37034h

M. C. Kroon, W. Buijs, C. J. Peters, and G. Witkamp, Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids, Thermochimica Acta, vol.465, issue.1-2, pp.40-47, 2007.
DOI : 10.1016/j.tca.2007.09.003

M. E. Van-valkenburg, R. L. Vaughn, M. Williams, and J. S. Wilkes, NFPA 287: Standard Test Methods for Measurement of Flammability of Materials in Cleanrooms Using a Fire Propagation Apparatus (FPA) Reaction to fire tests, Measurement of material properties using a fire propagation apparatus, Thermochim. Acta Fire Mater. Fire Mater, vol.425, issue.30, pp.181-188, 2001.

A. Diallo, A. B. Morgan, C. Len, and G. Marlair, An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids, Energy & Environmental Science, vol.168, issue.3, pp.699-710, 1980.
DOI : 10.1039/c2ee23926d

URL : https://hal.archives-ouvertes.fr/ineris-00961793

M. R. Je-50, T. M. Del-sesto, C. Mccleskey, K. C. Macomber, A. T. Ott et al., Physical Properties of Polymers Handbook. 2nd Revised edition, Thermochim. Acta, vol.491, pp.118-120, 2007.

T. J. Wooster, K. M. Johanson, K. J. Fraser, D. R. Macfarlane, and J. L. Scott, Thermal degradation of cyano containing ionic liquids, Green Chemistry, vol.20, issue.358, pp.691-696, 2006.
DOI : 10.1039/b606395k

D. M. Fox, J. W. Gilman, H. C. De, P. C. Long, and . Trulove, TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants, The Journal of Chemical Thermodynamics, vol.37, issue.9, pp.900-905, 2005.
DOI : 10.1016/j.jct.2005.04.020

K. J. Baranyai, G. B. Deacon, D. R. Macfarlane, J. M. Pringle, and J. L. Scott, Thermal Degradation of Ionic Liquids at Elevated Temperatures, Australian Journal of Chemistry, vol.57, issue.2, pp.145-147, 2004.
DOI : 10.1071/CH03221

M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Thermal stability of low temperature ionic liquids revisited, Thermochimica Acta, vol.412, issue.1-2, pp.47-53, 2004.
DOI : 10.1016/j.tca.2003.08.022

D. M. Fox, W. H. Awad, J. W. Gilman, P. H. Maupin, H. C. De et al., Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium saltsThe authors wish to thank the scientists at the Occupational Safety and Health Administration ? Salt Lake Technical Center for their measurement of the imidazolium flashpoints.The policy of the National Institute of Standards and Technology (NIST) is to use metric units of measurement in all its publications, and to provide statements of uncertainty for all original measurements. In this document however, data from organizations outside NIST are shown, which may include measurements in non-metric units or measurements without uncertainty statements. The identification of any commercial product or trade name does not imply endorsement or recommendation by NIST or the United States Air Force (USAF). Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the USAF or NIST., Green Chemistry, vol.5, issue.6, pp.724-727, 2003.
DOI : 10.1039/b308444b

S. Holopainen, M. Nousiainen, J. Puton, M. Sillanpaa, U. Bardi et al., Evaporation of ionic liquids at atmospheric pressure: Study by ion mobility spectrometry, Talanta, vol.83, issue.3, pp.907-915, 2010.
DOI : 10.1016/j.talanta.2010.10.062

J. Salminen, N. Papaiconomou, R. A. Kumara, J. M. Lee, J. Kerr et al., Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Phase Equilibria, vol.261, issue.1-2, pp.421-426, 2007.
DOI : 10.1016/j.fluid.2007.06.031

H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, and M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation, The Journal of Physical Chemistry B, vol.109, issue.13, pp.6103-6110, 2005.
DOI : 10.1021/jp044626d

J. Salgado, M. Villanueva, J. J. Parajo, and J. Fernandez, Long-term thermal stability of five imidazolium ionic liquids, The Journal of Chemical Thermodynamics, vol.65, pp.184-190, 2013.
DOI : 10.1016/j.jct.2013.05.049

H. Ohtani, S. Ishimura, and M. Kumai, Thermal Decomposition Behaviors of Imidazolium-type Ionic Liquids Studied by Pyrolysis-Gas Chromatography, Analytical Sciences, vol.24, issue.10, pp.1335-1340, 2008.
DOI : 10.2116/analsci.24.1335

W. H. Awad, J. W. Gilman, M. Nyden, R. H. Harris, T. E. Sutto et al., Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites, Thermochimica Acta, vol.409, issue.1, pp.3-11, 2004.
DOI : 10.1016/S0040-6031(03)00334-4

J. Lassegues, J. Grondin, C. Aupetit, and P. Johansson, Spectroscopic Identification of the Lithium Ion Transporting Species in LiTFSI-Doped Ionic Liquids, The Journal of Physical Chemistry A, vol.113, issue.1, pp.305-314, 2009.
DOI : 10.1021/jp806124w

M. J. Monteiro, F. F. Bazito, L. J. Siqueira, M. C. Ribeiro, and R. M. Torresi, Transport Coefficients, Raman Spectroscopy, and Computer Simulation of Lithium Salt Solutions in an Ionic Liquid, The Journal of Physical Chemistry B, vol.112, issue.7, pp.2102-2109, 2008.
DOI : 10.1021/jp077026y

F. Keating, J. B. Gao, and . Ramsey, TGA-MS study of the decomposition of phosphorus-containing ionic liquids trihexyl(tetradecyl)phosphonium decanoate and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide, Physical Chemistry Chemical Physics 71, pp.207-211, 2011.
DOI : 10.1007/s10973-011-1528-3

H. Yao, J. Zhang, Y. Zhang, H. Sun, and Q. Shen, Synthesis of Cationic N-Heterocyclic Carbene Lanthanide Bromide and the Influence of N-Heterocyclic Carbene and Lanthanide Metals, Organometallics, vol.29, issue.22, pp.5841-5846, 1964.
DOI : 10.1021/om100562q

P. Ribiere, S. Grugeon, M. Morcrette, S. Boyanov, S. Laruelle et al., Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry, Energy Environ. Sci., vol.196, issue.20, pp.5271-5280, 2012.
DOI : 10.1016/j.psep.2011.06.022

URL : https://hal.archives-ouvertes.fr/hal-00806278

J. Golding, S. Forsyth, D. R. Macfarlane, M. Forsyth, and G. B. Deacon, Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids, Green Chemistry, vol.4, issue.3, pp.223-229, 2002.
DOI : 10.1039/b201063a

T. J. Wooster, K. M. Johanson, K. J. Fraser, D. R. Macfarlane, and J. L. Scott, Thermal degradation of cyano containing ionic liquids, Green Chemistry, vol.20, issue.358, pp.691-696, 2006.
DOI : 10.1039/b606395k

H. Ohtani, S. Ishimura, and M. Kumai, Thermal Decomposition Behaviors of Imidazolium-type Ionic Liquids Studied by Pyrolysis-Gas Chromatography, Analytical Sciences, vol.24, issue.10, pp.1335-1340, 2008.
DOI : 10.2116/analsci.24.1335