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ABSTRACT

The sensor used in French mines to detect firedamp (methane) in airways is a platinum

filament catalytic sensor.

Its performance characteristics have been constantly improved by new conditioning

techniques : heating filaments functioning at high temperature, signal processing.

In this document, we describe the operation of the sensor and the conditioning

techniques successively used in different mine gas detectors, stressing for each the

improved performance obtained.

In conclusion, we will show that the last technique recently developed broadens the

field of use of the sensor to industrial and domestic explosimetry.



INTRODUCTION

Sensors used in explosimeters for the detection of explosive gases are generally

catalytic. The most widespread are catalytic pellets.

A metallic oxidation catalyst is heated to a sufficiently high temperature to oxidize the

gas. The oxidation reaction increases the temperature of the catalyst which increases

its electrical resistance, whose amplitude is proportional to the gas concentration.

In the 1950s we developed a sensor of this type for the mining industry. It was based

on a platinum filament and destined to detect methane, responsible for mine

explosions.

The filament is distinguished from the catalytic pellets by its operating

temperature: 1000°C instead of 600°C, which confers on it the advantage of being

relatively insensitive to fouling and catalyst poisoning. The disadvantage, however, is

rapid wear, preventing it from operating permanently.

The measurement technique thus involves energizing the sensor just long enough to

make the measurement and then turning it off for as long as the application permits.

The first instruments of this time could run for 100,000 measurements, or about

9 months at the rhythm of one measurement every 4 minutes.

By improving the filament heating technique, the measurement capacity has been

increased considerably: 10,000,000 measurements with the last methanemeter

recently marketed, or a lifetime of 1.5 years at the practically continuous measurement

rhythm of once every 5 seconds.

Endowed with these performance characteristics, the platinum filament sensor is today

a reliable solution for explosimetry, in particular in environments polluted with certain

catalyst poisons such as sulfur-containing products, which other catalytic sensors

resist poorly.



In addition, the technique involving brief heating pulses, applicable only to filament

sensors since it requires a very low thermal inertia of the sensor, has enabled new

procedures to be developed for the identification of certain combustible gases or

vapors and for the measurement of methane concentrations up to 100% v/v.

1. DESCRIPTION OF THE SENSOR (figure 1)

It is composed of two spiral filaments made of pure platinum : a detector filament and

a compensating filament, both 80 fxm in diameter but of unequal lengths.

The filaments are enclosed inside a hemispherical chamber made of sintered metal,

enabling the natural diffusion of gases. They are welded to massive high thermal

inertia antennas, that emerge from the chamber through isolated ports.

An activated charcoal filter inside the chamber surrounds the filaments and protects

them from catalyst poisons, in particular silicones.

2. OPERATION

2.1 Detector filament

During the measurement period, a current I passes through the filament, raising its

temperature in the center to 1000°C by the Joule effect.

Its electrical resistance Rd is a function of temperature T, which depends on I and on

the quantities of oxidized gases.

The temperature of the filament is not the same along its entire length because of the

cooling caused by the metallic supports.

Catalytic activity occurs on the central spires, whose temperature is higher than 800°C

(figure 2).

The detector filament is appropriately treated to eliminate impurities in platinum.



Its temperature is determined in order for catalytic activity to be maximal at low

methane concentrations, lower than the L.I.E., and to burn off products that could

foul its surface, thereby reducing the active sites on which the oxidation occurs.

2.2 Compensating filament

This filament does not undergo a purifying treatment and is heated at a lower

temperature, about 600°C on the central spires. At this temperature, catalytic activity

starts at the stoichiometric concentration of 10% v/v for methane.

The compensator has a dual role: it compensates the thermal effects that interfere

with detector measurement (temperature and thermal conductivity of the ambient

medium), and detects high levels to remove any doubts concerning detector

measurement (figure 3).

Re (600°C) = 0.73 Q, Rc(0°C) = 0.29 Q

3. CHARACTERISTICS

3.1. Lifetime

Sensor lifetime is that of the detector filament. Platinum wear begins at 600°C and is

particularly high around the operating temperature of the filament (at temperatures

close to 1000°C, the rate of wear of the platinum filament is proportional to the cube

of temperature). It is thus desirable to control this temperature throughout filament

life, in particular when there is a supply of additional heat resulting from the oxidation

of a gas.

Filament wear, greater in the central zone, results in a reduction in the cross-section

of the wire, increasing resistance when cold Rd(0°C) and when hot Rd(T). This

increases the explosimeter readings by a constant quantity and thus requires frequent

recalibration of apparatus zero (reading in pure air).

Sensor lifetime thus depends on the duration of the measurement and on filament

temperature during the measurement.



The various heating techniques used in several generations of methane detectors in

order to increase lifetime have attempted to reduce the duration of the measurement

and to control temperature.

3.2 Response time of the methane deteefor (figure 4)

The response time of a methane detector or an explosimeter is the time it takes to

indicate 90% of the value of a concentration of gas G.

The response time of the instrument depends on :

- the response time of the sensor (Tsens), which is the time the gas takes to fill  in

the combustion chamber,

- the extinction time (Text) separating two consecutive measurements,

- the occurrence of the measurement in relation to the gas concentration.

If Text > Tsens then : Tsens < response time < Tsens + Text

3.3 Electric consumption

Wmeas = energy consumed during the measurement =

(Rd x Id2 + Re x Ic2) x Theat

Pmeas = power dissipated during the measurement = Rd x I 2

Pmean = mean power = Pmeas x Theat/(Theat + Text)

Mean power takes into account the extinction time of the filament. It determines

battery autonomy for portable apparatus.

Theat = filament heating time = duration of measurement

Text = duration of filament extinction

4. HEATING TECHNIQUES AND PERFORMANCES

A number of different techniques have been used since the creation of the sensor, as

developments in electronic components made them possible. We will describe them in

the chronological order of development of the methane detectors that used them.



4.1 Constant intensity heating (figure 5̂  : remote mine gas detector CTT63/40.

GTM mine gas detector

Since the sensor can be placed at a distance from the measurement device, this heating

mode was chosen to overcome voltage drops in the cable and in the contacts.

I t has a classical bridge structure. A constant intensity 0.74 A current passes through

the filaments and raises them to operating temperature in about 1.5 seconds. The zero

potentiometer is used to adjust Ub to offset the shift caused by sensor wear.

When a gas is oxidized on the detector, Rd increases, Ua increases more than Ub, and

the measurement signal (Ua - Ub) increases : about 50 mV per % volume CH4.

Measurement time is defined as the time the operator requires to read the

galvanometer display.

Constant current heating offers a very low measurement capacity, with an excessively

long response time. The measurement rhythm of methane detectors operating

according to this principle was set at 4 minutes in order to obtain an acceptable

compromise between response time, sensor lifetime (9 months) and the frequency of

recalibration (weekly).

Filament temperature, proportional to Rd(T) x 1 ,̂ increases with increasing filament

wear. Wear is also considerably accelerated by gas oxidation: the heat supplied by the

current is supplemented by those arising from the oxidation reaction: these

instruments have a lif e time of only 30,000 measurements in 2% v/v CH4.

On the other hand, this technique provides considerable sensitivity, about 50 mV per

% v/v.

4.2 Constant bridge voltage heating (figure 6 ): remote mine gas detector

CTT63/40T multifunction mine gas detector GTM67A

During a measurement, voltage at the terminals is adjusted to 1300 V.

I f gas is oxidized on the detector, Rd increases, thus I decreases and Ua increases.



The temperature increase of the filament in the gas is less than in the constant current

technique, since the heat added by the oxidation reaction lead to a decrease in those

supplied by the current which decreases.

Similarly, when the filament wears, Rd increases but I decreases. Detector

temperature increases as the filament wears, but less than in the constant current

technique.

4.3 Constant partial voltage heating (figure 7) : remote mine gas detector MT85f

multifunction mine gas detector GTM741

The potential differences at the terminals of the compensator and detector filaments

are held constant. The potential difference at the terminals of the two filaments

mounted in series is adjusted to 1.300 V.

A potential limiting circuit prevents Ua from exceeding 0.760 V by shunting a current

(Imeas) when Rd increases

The decreased current in the detector attenuates the temperature increase caused by

gas oxidation or filament wear. The effect is more pronounced than in the case of the

constant bridge voltage set-up.

Increased measurement capacity is partially due to the reduced heating time, brought

down to 1.3 seconds (in order to enable the measurement to be read, a circuit keeps

the measurement in memory during filament extinction).

The intensity of the heating current, high at the beginning since the filaments are cold,

enables operating temperature to be reached in about 1 second (figure 8).

The measurement signal is memorized during the last 300 ms.

Characteristics of the GTM741 mine gas detector using this technique :

- Measurement rhythm :15 s,

- Sensor lifetime : 1 year,

- Response time : between 15 and 30 s,

- Calibration frequency : weekly.



4,4 Heating hv rapid ffpineratiire H ^ and constant detector filament resistance

(figure 9) : GTM90C ming g as detector

The increase to operating temperature occurs very rapidly by a constant high intensity

current. When this temperature is reached, a circuit maintains the resistance at Rd

(1000°C) regardless of gas concentration, by acting on current intensity : if additional

heat are supplied by the oxidation of a gas, the circuit decreases the Joule effect heat

by reducing the current.

Rd(T) = R l x R 3 / R2

Temperature rise of the filament lasts 0.2 s; I = 1.4 A (figure 10).

When Rd(T) = 1.03 Q, the controller reduces intensity in order to maintain Rd at this

value.

Variations of the plateau potentiel Ud is the measurement signal. The measurement is

memorized before the current is cut.

This heating technique confers a very long lifetime on the sensor:

10,000,000 measurements and independent of the quantities of gas oxidized by the

filament. This is due to 3 factors :

- reduced heating time,

- temperature control during measurements,

- slight decrease in filament temperature as it wears: with increasing wear,

Rd(0°C) increases. Since Rd(T) remains constant (1.03 Q) filament temperature

decreases.

Wear is independent of the gas history of the filament. In this case, it depends only on

the number of measurements, which enables zero drift to be simulated in order to

carryout an automatic correction and thus considerably reduce maintenance

operations.



Consumption is very low as a result of the short heating time and the suppression of

the compensating filament.

Comment: the compensating filament can be replaced by a low consumption

temperature sensor (thermistor, semiconductors, etc.). Although changes in relative

humidity are not compensated, their influence on measurements remains negligible,

since they are lower than 0.1% v/v CH4 at 80% R.H.

The "removal of doubt" at high methane concentrations, which was assured by the

compensator and made indispensable by the low measurement rhythms in the initial

methane detectors, can be replaced by a "locking" alarm circuit, as in continuous

measurement explosimeters.

A practically continuous measurement rythm of 5 seconds leads to a consumption of

0.024 Joule, i.e. a mean current of 0.07 A.

The device requires a power supply higher than 1.2 V. A 2-element 2.5 V nickel-

cadmium battery is sufficient.

Characteristics of the GTM90C mine gas detector using this technique :

- Measurement rhythm: 5 s, automatically increases to 2.5 s if the concentration

increases,

- Sensor lifetime : 19 months,

- Response time : 15 to 18 s,

- Response time for the alarm to an explosive concentration : < 5 s,

- Consumption : 0.09 A (0.02 A for the electronic circuits),

- Automatic zero correction : every month.

4.5 Summary table

Table 1 (see appendix) summarizes progress in the characteristics and performance of

the different techniques.



5. Conclusion anrj

The properties of the platinum filament sensor, designed 30 years ago for mining

applications, are today optimally used as a result of the perfected conditioning of its

power supply. At a similar response time, its electrical consumption is lower than that

of low consumption catalytic pellets.

Its high operating temperature effectively protects it against certain catalyst poisons.

Its field of application now extends to industrial and domestic gas detection. The

technique of heating by short pulses, specific to the filament with low thermal inertia,

enables the principle faults of catalytic oxidation to be overcome, with several

improvements: measurement range limited to the stoichiometric value of the air-gas

mixture, and absence of selectivity.

Examples :

- 0-100% v/v methane detector (figure 1 la)

The heating pulse is decomposed into two temperature plateaus :

- 1 st plateau at T < 400°C : the filament operates as a hot wire detector and

furnishes measurements of concentrations higher than stoichiometry,

- 2nd plateau at 1000°C : the filament gives the measurement of concentra-

tions lower than stoichiometry.

The zero of the hot wire detector is done automatically each time the measurement is

lower than the L.I.E.

- Identification of the gas (figure 1 lb)

The catalytic activity of a combustible gas or vapor as a function of oxidation

temperature follows a law specific to each species. The combustible product can be

identified by measurements made at different temperature plateaus.

Zeros at the 3 temperatures are done automatically when the air is pure.



INERIS (Institut National de l'Environnement Industriel et des Risques) develops

these new techniques involving signal processing and algorithm execution, and is

continuing work on the platinum filament sensor in order to improve its performance

characteristics ; thus, a new smaller one, to reduce response time, is being developed.

The sensor and the methane detectors described in this document are manufactured

by Oldham-France under an INERIS license.
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Legends

Fig. 1. Platinum filament sensor

Fig. 2. Distribution of the filament temperature

Fig. 3. Removal of doubt

Fig. 4. Response time

Fig. 5. Constant intensity heating device

Fig. 6. Constant bridge voltage heating device

Fig. 7. Constant partial voltage heating device

Fig. 8. current shape

Fig. 9. Constant resistance heating device

Fig. 10. signals shape

Fig. l la. 1 lb. Heating pulses

Appendix - Table 1. Summary table
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figure n°l
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figure n°2

1000'

0 T • L

catalytic activity zone

- Rd(t°) = Rd(0°) x

-1° = fa ; %v/v CH4)

-1°= mean temperature of the filament

-tmean = l / L j t(dl)
0

- Rd = resistance of detector filament at t°

-k = 0.004 for the platinum

- Rd(0°) = resistance at 0° = p x L / S

- p = resistivity ; L = length ; S = section

- Rd(0°) = 0.35 Q Rd(1000°) = 1.03 Q

- Rd(1000°) = 1000° on the central spire.
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figure n°3
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figure n°4
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figure n°5

- signal = 50mV x %v/v CH4

- Theat = 3 s

- Wmeas = 2.9 J

- lif e time:

. in air = 100,000 measurements

. in 2% CH4 = 30,000 measurements

-Rd(2%)=1.15i2

measurement device
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figure n°6

- signal = 20mV x %v/v CH4

- Theat = 3 s

- Wmeas = 2.9 J

- lif e time:

. in air = 250,000 measurements

. in 2% CH4 = 100,000 measurements

measurement device
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figure n°7

measurement device

- signal

= 0.015Ax%v/vCH4

-Theat=1.3sec.

-Wmeas = 1.25J

- lif e time:

. in air =

2,000,000 measurements

. in 2% CH4 =

1,000,000 measurements

Rd(2%) = 1.08ft
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figure n°8

measurement signal
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figure n°9

+Vbat
- signal = 20mV x %v/v CH4

- Theat = 0.35 sec.

-Wmeas = 0.36J

- lif e time in air and in gaz = 10,000,000

measurements

- Rd(air and gaz) = cte = 1.03Q

the compensator filament is not used

OV
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figure n°10

1.4V measurement plateau

air
2%
4% CH4

tO 0.2s 0.35s
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figuren°lla- l i b

tO 0.2 0.4 s

theat

tO 0.2 0.3 0.4

theat
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Appendix - Table 1

air
constant
intensity c m

2%

air
constant

Dnage
voltage CH4

2%

constant a i r

poTlld i
voltage CH4

2%

air
constant

resistance
CH4
2%

d.d.p. at
terminals
detector
filament
(Volt)

0.76

0.86

0.76

0.80

0.76

0.76

0.76

0.72

intensity
through

the
filament
(Ampere)

0.74

0.74

0.74

0.72

0.74

0.71

0.74

0.70

filament
resistance

(Ohm)

L03

1.15

1.03

1.12

1.03

1.08

1.03

1.03

consumption
during the

measurement
(Joule)

2.9

2.9

1.25

0.36

lif e time
or

capacity of
measurements

100,000

30,000

250,000

100,000

2,000,000

1,000,000

10,000,000

10,000,000


