An iterative algorithm for finite element analysis

Abstract : In this paper we state in a new form the algebraic problem arising from the one-field displacement finite element method. The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the non-linear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of F.E.M. computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. By using the GMRES algorithm, we build for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because ail fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Document type :
Conference papers
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download

https://hal-ineris.archives-ouvertes.fr/ineris-00972378
Contributor : Gestionnaire Civs <>
Submitted on : Thursday, April 3, 2014 - 4:28:07 PM
Last modification on : Thursday, January 11, 2018 - 6:25:48 AM
Long-term archiving on : Thursday, July 3, 2014 - 4:55:55 PM

File

2002-076_hal.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : ineris-00972378, version 1
  • INERIS : PU-2002-076

Collections

Citation

Farid Laouafa, P. Royis. An iterative algorithm for finite element analysis. 10. International Congress on Computational and Applied Mathematics, Jul 2002, Leuven, Belgium. ⟨ineris-00972378⟩

Share

Metrics

Record views

145

Files downloads

510