VOCs and formaldehyde emissions from cleaning products and air fresheners
Cécilia Solal, Christophe Rousselle, Corinne Mandin, Jacques Manel, François Maupetit

To cite this version:
Cécilia Solal, Christophe Rousselle, Corinne Mandin, Jacques Manel, François Maupetit. VOCs and formaldehyde emissions from cleaning products and air fresheners. 11. International Conference on Indoor Air Quality and Climate (Indoor Air 2008), Aug 2008, Copenhague, Denmark. Paper ID: 183. ineris-00973310

HAL Id: ineris-00973310
https://hal-ineris.archives-ouvertes.fr/ineris-00973310
Submitted on 4 Apr 2014
VOCs and formaldehyde emissions from cleaning products and air fresheners

Cécilia Solal\(^1\)*, Christophe Rousselle\(^1\), Corinne Mandin\(^2\), Jacques Manel\(^3\) and François Maupetit\(^4\)

\(^1\)French Agency for Environmental and Occupational Health Safety (Afsset), Maisons-Alfort, France
\(^3\)Poison Control Centre (CAPTV), Nancy, France
\(^4\)Building Technical and Scientific Centre (CSTB), Marne-la-Vallée, France

*Corresponding email: cecilia.solal@afsset.fr

SUMMARY

Human indoor exposure to Volatile Organic Compounds (VOCs) may be associated with the use of household products. However little is known about their emissions and to what extent they contribute to indoor air pollution. The French Agency for Environmental and Occupational Health Safety (Afsset) conducted tests in order to characterize VOCs emissions from 32 consumer products: air fresheners, glass cleaners, furniture polishes, toilet products, carpet and floor cleaning products. All experiments were conducted by the Scientific and Technical Centre for Building (CSTB) in realistic conditions of use (in emission test chamber or in an experimental house). Results show that the use of consumer products can lead to high indoor VOCs concentrations. Some of them are toxic airborne contaminants. The link between formaldehyde emissions and product compositions is discussed. Finally, formaldehyde concentrations are compared to the indoor air quality guideline value proposed by Afsset.

KEYWORDS

Formaldehyde, Volatile organic compounds, Household products, Exposure

INTRODUCTION

Most indoor air pollutants come from the use of cleaning products, air fresheners, pesticides or materials related to furniture and construction. Some of them may trigger adverse health effects such as nasal irritation, respiratory disorders and even asthma (Zock et al., 2007). Respiratory conditions including asthma in children have also been correlated to formaldehyde concentrations indoors (Mendell, 2007).

Little is known about chemical emissions resulting from the use of cleaning products and air fresheners and until now, few regulatory frameworks is in place to define the safety of these products.

In June 2004, the French government set up a National Environmental Health Action Plan (NEHAP) which intends to improve indoor air quality (French Ministries, 2004-2008). In this framework, the French Agency for Environmental and Occupational Health Safety (Afsset) was mandated by the Ministries of Health, Environment and Labour to assess health risks associated with formaldehyde and other Volatile Organic Compounds (VOCs) indoors. In this request, Afsset has to identify everyday life products emitting or containing formaldehyde and analyse and quantify associated human exposure by direct and indirect sources.
In this paper, we report on experimental results of emission tests and measurements of indoor formaldehyde and VOCs concentrations associated with the use of various cleaning products and air fresheners. In order to assess the exposure level of consumers to formaldehyde and VOCs, these tests were conducted in realistic conditions of use and ventilation. The composition of some products is also presented and gives the opportunity to make assumptions about a possible relationship between formaldehyde emissions and formaldehyde or releasing-formaldehyde compounds composition (direct or indirect sources).

METHODS

Product selection
32 consumer products from 16 categories were chosen by Afsset among a list of multiple products compositions registered in the national consumer products library (Base Nationale des Produits et Compositions - BNPC) managed by the French Poison Control Centre in Nancy. The selected categories are expected to contain VOCs or formaldehyde. Once the categories were defined, the more and the less expensive product in each category were bought in supermarkets and department stores. Categories of tested products are briefly presented in Table 1.

Formaldehyde and VOCs emissions

Application protocols
The tests presented in this paper were carried out by the CSTB (Building Technical and Scientific Centre) in realistic conditions of use and ventilation. Laboratory measurements were conducted in emission test chambers or in the CSTB experimental house MARIA (Mechanised house for Advanced Research on Indoor Air), depending on the category of products. Experimental protocols were carried out in the test room in MARIA for air fresheners, furniture polishes, glass cleaners and glass wipes, in the toilets in MARIA for toilet blocks and gels and in emission test chambers for carpet cleaners, stain removers for carpets, floor cleaners and wipes. These scenarios are described in Table 1.

Table 1. Categories of the 32 tested products.

<table>
<thead>
<tr>
<th>Product category</th>
<th>Conditions of use</th>
<th>Scenario: number of samples (S) and duration between samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1/A2*</td>
<td>incense</td>
<td>Burning duration: 60 min* / 25 min</td>
</tr>
<tr>
<td>B1/B2</td>
<td>electric diffuser</td>
<td>Use during 120 min</td>
</tr>
<tr>
<td>C1/C2</td>
<td>liquid air freshener with a wick</td>
<td>Use during 120 min</td>
</tr>
<tr>
<td>D1/D2</td>
<td>scented candle</td>
<td>Use during 180 min</td>
</tr>
<tr>
<td>E1/E2</td>
<td>spray</td>
<td>Continuous spray during 10 sec**</td>
</tr>
<tr>
<td>F1/F2</td>
<td>air freshener for vacuum cleaners</td>
<td>Use in a vacuum cleaner in function during 5 min</td>
</tr>
<tr>
<td>G1/G2</td>
<td>glass cleaner</td>
<td>9 trigger pulls on the test room, glass, no wipe step</td>
</tr>
<tr>
<td>H1/H2</td>
<td>glass wipes</td>
<td>Use of 4 wipes for the test room window</td>
</tr>
<tr>
<td>I1/I2</td>
<td>furniture polish</td>
<td>Sprays on a laminated table dried up</td>
</tr>
</tbody>
</table>
Experimental house MARIA

The CSTB experimental house MARIA is dedicated to study pollutants transfers, test ventilation systems, settle field investigations methods and validate computational models. It is composed with five main rooms equipped with various ventilation systems (natural draught ducts, extract ventilation and combined extract and input ventilation) and heating systems (conectors, water heated floors) (Ribéron and O’Kelly, 2002).

The tests were conducted in the bedroom and the toilets, without any piece of furniture except for the emission test for the furniture polishes (laminated table in the centre of the room). VOCs and formaldehyde were sampled directly from the air extraction system. Measured concentrations are therefore globally representative of the pollutant level in the test room, even if in some cases, the distribution of indoor concentrations can be heterogeneous (e.g. in case of combustion processes, use of sprays etc.).

Parameters such as relative humidity, temperature and air exchange rate were registered during the whole period of the tests. Ventilation conditions were controlled by mechanical extraction during the experiment. The characteristics of the test room and the toilets in MARIA are summarized in Table 2.

Table 2. MARIA test rooms characteristics.

<table>
<thead>
<tr>
<th>Item</th>
<th>Test room (bedroom)</th>
<th>Toilets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (m3)</td>
<td>32.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Window area (m2)</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>20 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>Air exchange rate (h$^{-1}$)</td>
<td>0.6</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Emission test chambers
The emission test chamber method is described in EN ISO 16000-9 (Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method). The characteristics are summarized in Table 3.

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (m3)</td>
<td>0.0509</td>
</tr>
<tr>
<td>Temperature</td>
<td>23 +/- 2</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>50 +/- 5</td>
</tr>
<tr>
<td>Specific ventilation rate qc (m3/h/m2)</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Sampling and analytical methods
VOCs were sampled on Tenax-TA and analysed using TD/GC/MSD/FID according to ISO 16000-6. The TVOC was calculated as toluene equivalents from the total integrated FID signal between hexane and hexadecane. The detection limit is in the range of 1 to 10 µg.m$^{-3}$ depending on the compounds. Formaldehyde has been sampled on DNPH cartridges and analysed using HPLC according to ISO 16000-3. Formaldehyde detection limit is 0.3 µg.m$^{-3}$.

RESULTS
The results presented herein do not represent the diversity of marketed cleaning products and air fresheners in France.

VOCs emissions
TVOC and VOCs concentrations are presented in Table 4 (corresponding to the maximal concentrations measured during the whole period of tests). Only some tested products are herein presented with the TVOC and VOCs of concern concentrations (carcinogenic compounds such as benzene, terpenes, high concentrations…).

<table>
<thead>
<tr>
<th>Tested product</th>
<th>TVOC* (µg.m$^{-3}$)</th>
<th>VOCs of concern (µg.m$^{-3}$)</th>
<th>Formaldehyde (µg.m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric diffuser B1</td>
<td>216</td>
<td>Octanal: 22</td>
<td>< 0.3 (limit of quantification)</td>
</tr>
<tr>
<td>Air freshener for vacuum cleaner F2</td>
<td>1737</td>
<td>Limonene: 39, Eucalyptol: 275, Linalool: 98, Alpha-pinene: 143, Beta-pinene: 40, Camphene: 99</td>
<td>< 0.3</td>
</tr>
<tr>
<td>Glass cleaner G1</td>
<td>2662</td>
<td>Trichloroethylene: 14, 1-butoxy-2-propanol: 1478, 1,1-diethoxyethane: 1121</td>
<td>4</td>
</tr>
<tr>
<td>Furniture polish J1</td>
<td>17487</td>
<td>Benzene: 1, Nonane: 1488, Decane: 2350, Undecane: 757</td>
<td>11</td>
</tr>
<tr>
<td>Furniture polish J2</td>
<td>17531</td>
<td>Nonane: 2741, Decane: 1077</td>
<td>5</td>
</tr>
<tr>
<td>Carpet cleaner M2</td>
<td>523712</td>
<td>1-methoxy-2-propanol: 108924, p-cymene: 1127</td>
<td>10</td>
</tr>
</tbody>
</table>
VOCs levels cover a large range of concentrations and vary widely between different types of products or even between two products from the same category. For a majority of products, high concentrations of very volatile organic compounds (VVOCs) were measured but the analytical methods used in this study are not suitable for VVOCs quantification.

Over the 32 TVOC concentrations, 37% were below 100 µg.m$^{-3}$, 19% were between 100 and 500 and 44% were above 500, with maximum levels above 500000 µg.m$^{-3}$ (carpet cleaner M2). Sorption of gas-phase analytes including terpene alcohols to chamber surfaces may also contribute to the persistence of elevated concentrations (Singer et al., 2006).

Formaldehyde emissions

For all tested air fresheners, formaldehyde concentrations are generally lower than 10 µg.m$^{-3}$ after use and then decrease progressively, reflecting pollutant removal by the ventilation system. Concerning burning devices i.e. incense sticks and scented candles, formaldehyde emission is rather related to combustion than to the composition. For glass cleaners and furniture polishes, the formaldehyde emission profile is presented in Figure 1. While formaldehyde concentrations remain below 10 µg.m$^{-3}$ just after use, emission profiles then increase although the overall product volatilization rate is declining. This may result from varying volatilization, chemical reactions between airborne pollutants or sorption behaviour among the constituents.

Figure 1. Formaldehyde concentrations for glass cleaners and furniture polishes.
For both categories of toilet products, formaldehyde concentrations are increasing with successive flushes, leading to a formaldehyde concentration above 10 µg.m⁻³ for the toilet block J1. For both carpet cleaners and carpet stain removers, formaldehyde concentrations remain steady after use below 10 µg.m⁻³. Except for the pure use of floor cleaners N1 and N2, formaldehyde concentrations for all floor cleaners are around or below 10 µg.m⁻³ as showed on Figure 2. This trend remains steady after use. The presence of Savon de Marseille does not influence formaldehyde emissions, whether these floor cleaners are diluted or pure. On the contrary, the dilution of the other floor cleaners decreases the formaldehyde concentrations. In this product category, the formaldehyde concentrations for floor wipe P1 are the highest among all the tested products: from 1249 µg.m⁻³ (0-30 min) to 128 µg.m⁻³ (not illustrated on Figure 2). This may be explained by the presence of formaldehyde or formaldehyde releasers within the product (“anti-bacterial” wipes).

Figure 2. Formaldehyde concentrations for floor cleaners except floor wipe P1.

* SM : Savon de Marseille

DISCUSSION

This work shows that the use of some consumer cleaning products and air fresheners may lead to the emission of high levels of VOCs and formaldehyde.

Human exposure to VOCs occurs through inhalation or skin contact. Consumer products (household products, cosmetics, paints…) represent individually minor sources of VOCs emissions but considered together, they all make a significant contribution to the total load of VOCs indoors.

Information regarding the 32 tested products composition was transmitted via the consultation of the BNPC, to try to explain emission profiles. This confidential database registers industrial compositions of various types of products that could be implied in human intoxications. They are declared to the BNPC on a voluntary basis by manufacturers. By using the specific reference of the 32 tested products, the BNPC analysis was performed to investigate the presence of formaldehyde, formaldehyde releasers or other VOCs (terpenes, aldehydes, alcanes) in the tested products. Formaldehyde releasers such as imidazolidinyl urea, diazolidinyl urea, sodium hydroxymethyl glycinate and benzylhemiformal may be used in consumer products as preservatives instead of formaldehyde. The products containing these
compounds may release the formaldehyde they contain when dissolved in aqueous or polar solvents. There is little information on the stability of these formaldehyde releasers in consumer products, as well as their safety profile. None of the 32 tested products were declared to contain formaldehyde. For 7 products, a formaldehyde releaser was declared in the composition but for 5 of them, the highest measured concentrations of formaldehyde are below 10 µg.m$^{-3}$. One floor cleaning product (N1) and one floor wipe (P1) were declared to contain a formaldehyde releaser and the associated maximal concentrations of formaldehyde emitted are quite high: 48 µg.m$^{-3}$ for N1 and 1249 µg.m$^{-3}$ for P1. The possible relationship between formaldehyde emission and the presence of formaldehyde releasers in the composition is not confirmed. Other formaldehyde releasers may not be identified yet such as methylisothiazolinone compounds.

Chemical reactivity can occur by photochemistry under the influence of sun rays and heat, converting VOCs into so-called “secondary” pollutants such as aldehydes, ketones, organic acids... (BEUC, 2005). Some studies show that reactive chemistry between terpenes and ozone produces formaldehyde (Destaillets et al., 2006; Fan et al., 2003; Singer et al., 2006). Moreover, specific VOCs are reacting with ozone at a higher rate than others (Destaillets et al., 2006). The effects of these secondary pollutants are still discussed (Nøjgaard et al., 2005) in particular in what extent they contribute to indoor pollution.

For 12 of the 32 tested products, the TVOC concentrations exceeded 1000 µg.m$^{-3}$, the maximum limit value in indoor air proposed in the Afsset protocol for qualification of solid building materials (Afsset, 2006; Rousselle et al., 2008). However adverse health effects cannot be assessed specifically on the basis of these values since human exposure and associated risks can only be quantified for each individual compound. Therefore TVOCs concentrations may only be considered as an indicator of significant emissions.

Formaldehyde is identified as a major issue, classified by the International Agency for Research on Cancer (IARC) as a human carcinogenic compound since June 2004, on the basis of observed nasopharyngeal carcinoma in workers (IARC, 2006). In this framework, in 2007, a working group in Afsset proposed formaldehyde Indoor Air Quality guideline values to protect from ocular and nasal irritation. These values will also protect against the occurrence of local carcinogenic effects (nasopharyngeal carcinoma) as nasal irritation is a key-event occurring at lower doses than cytotoxicity (Afsset, 2007; Mandin et al., 2008). The indoor air quality guideline value for short term exposure is 50 µg.m$^{-3}$ over 2 hours. In this study, some measured formaldehyde concentrations exceed this guideline value which may lead to irritative symptoms in the consumers. However the cancer risk of formaldehyde at these non-cytotoxic concentrations is likely to be negligible.

CONCLUSIONS

The use of cleaning products and air fresheners can lead to emissions of primary or secondary pollutants indoors. Starting from analytical methods designed for building products and air fresheners, realistic experimental protocols were defined in order to characterise formaldehyde and VOCs emissions of various types of products in order to assess consumers’ exposure.

Emissions vary widely depending on the type of products. For some of them, formaldehyde concentrations remained steady or increased after use. This trend may be explained by chemical reactivity between terpenes and ozone but these reaction pathways are still not well
characterized. A majority of products released high concentrations of VVOCs that could not be quantified with the analytical methods used in this study.

Even if this study is not representative of emissions from all the consumer products on the French market, it shows that such emissions can really influence indoor air quality and that further studies are necessary to better understand the contribution of these emissions to human exposure to chemicals.

REFERENCES