L. Coudray-saint, Germer 6011 Creil-Nogent-sur-Oise 6012 Crépy-en-Valois 6013 Crèvecoeur-le-Grand 6014 Estrées-Saint-Denis 6015 Formerie 6016

. Marseille-en, Beauvaisis 6023 Méru 6024 Mouy 6025 Nanteuil-le-Haudoin 2026 Neuilly-en-Thelle 2027 Nivillers 6028 Noailles 6029 Noyon 6030 Pont-Sainte-Maxence 6031 Ressons-sur-Matz 6032 Ribécourt-Dreslincourt 6033 Saint-Just-en-Chaussée 6034

A. Leclerc, J. F. Chastang, G. Menvielle, and D. Luce, Socioeconomic inequalities in premature mortality in France: Have they widened in recent decades?, Social Science & Medicine, vol.62, issue.8, pp.2035-2045, 2006.
DOI : 10.1016/j.socscimed.2005.08.031

URL : https://hal.archives-ouvertes.fr/inserm-00086746

M. Melchior, M. Goldberg, N. Krieger, I. Kawachi, G. Menvielle et al., Occupational class, occupational mobility and cancer incidence among middle-aged men and women: a prospective study of the French GAZEL cohort*, Cancer Causes & Control, vol.45, issue.4, pp.515-524, 2005.
DOI : 10.1093/oxfordjournals.aje.a010294

B. Challier and J. Viel, Relevance and validity of a new French composite index to measure poverty on a geographical level, Rev. Epidemiol. Sante Publi, vol.49, pp.41-50, 2001.

S. Havard, S. Deguen, J. Bodin, K. Louis, O. Laurent et al., A small-area index of socioeconomic deprivation to capture health inequalities in France, Social Science & Medicine, vol.67, issue.12, pp.2007-2016, 2008.
DOI : 10.1016/j.socscimed.2008.09.031

URL : https://hal.archives-ouvertes.fr/hal-00672312

C. Salmond, P. Crampton, and F. Sutton, NZDep91: A New Zealand index of deprivation, Australian and New Zealand Journal of Public Health, vol.24, issue.2, pp.835-837, 1998.
DOI : 10.2105/AJPH.84.5.819

L. A. Waller and C. A. Gotway, Applied Spatial Statistics for Public Health Data, 2004.
DOI : 10.1002/0471662682

A. B. Lawson, Disease map reconstruction, Statistics in Medicine, vol.17, issue.14, pp.2183-2204, 2001.
DOI : 10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0.CO;2-P

K. Kafadar, Choosing among two-dimensional smoothers in practice, Computational Statistics & Data Analysis, vol.18, issue.4, pp.419-439, 1994.
DOI : 10.1016/0167-9473(94)90160-0

J. Besag, J. York, and A. Mollie, Bayesian image restoration, with two applications in spatial statistics, Annals of the Institute of Statistical Mathematics, vol.74, issue.1, pp.1-59, 1991.
DOI : 10.1007/BF00116466

P. Goovaerts and S. Gebreab, How does Poisson kriging compare to the popular BYM model for mapping disease risks?, International Journal of Health Geographics, vol.7, issue.1, pp.10-1186, 2008.
DOI : 10.1186/1476-072X-7-6

M. R. Oliver, R. Webster, C. Lajaunie, K. R. Muir, S. E. Parkes et al., Binomial cokriging for estimating and mapping the risk of childhood cancer, Mathematical Medicine and Biology, vol.15, issue.3, pp.279-297, 1998.
DOI : 10.1093/imammb/15.3.279

P. Goovaerts and G. Jacquez, Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: The case of lung cancer in Long Island, Int. J. Health Geogr, vol.3, pp.10-1186, 2004.

P. Goovaerts, Simulation-based Assessment of a Geostatistical Approach for Estimation and Mapping of the Risk of Cancer, Geostatistics Banff, vol.2, pp.787-796, 2005.
DOI : 10.1007/978-1-4020-3610-1_82

P. Goovaerts, Detection of spatial clusters and outliers in cancer rates using geostatistics filters and spatial neutral models, Geostatistics Environ. Appl, 2005.

P. Goovaerts, Geostatistical analysis of disease data: Estimation of cancer mortality risk from empirical frequencies using poisson kriging, Int. J. Health Geogr, pp.10-1186, 2005.

P. Goovaerts, Analysis and Detection of Health Disparities Using Geostatistics and a Space-time Information System. The Case of Prostate Cancer Mortality in the United States, Proceedings of GIS Planet 2005, 1970.

P. Goovaerts, Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging, Int. J. Health Geogr, pp.10-1186, 2006.

P. Goovaerts, Geostatistical analysis of disease data: Visualization and propagation of spatial uncertainty in cancer mortality risk using poisson kriging and p-field simulation, Int. J. Health Geogr, vol.5, pp.10-1186, 2006.

R. Flowerdew, A. Geddes, and M. Green, Behaviour of Regression Models under Random Aggregation, In Modelling Scale in Geographical Information Science, pp.89-104, 2001.

S. Openshaw and P. J. Taylor, A Million or So Correlation Coefficients: Three Experiments on the Modifiable areal Unit Problem, In Statistical Methods in the Spatial Sciences, 1979.

S. Openshaw, The Modifiable Areal Unit Problem Concepts and Techniques in Modern Geography

G. Books, Available online: http://qmrg.org.uk/files, 1984.

M. Riva, L. Gauvin, P. Apparicio, and J. M. Brodeur, Disentangling the relative influence of built and socioeconomic environments on walking: The contribution of areas homogenous along exposures of interest, Social Science & Medicine, vol.69, issue.9, pp.1296-1305, 2009.
DOI : 10.1016/j.socscimed.2009.07.019

A. Briant, P. P. Combes, and M. Lafourcade, Dots to boxes: Do the size and shape of spatial units jeopardize economic geography estimations?, Journal of Urban Economics, vol.67, issue.3, pp.287-302, 2010.
DOI : 10.1016/j.jue.2009.09.014

URL : https://hal.archives-ouvertes.fr/halshs-00349294

J. Caudeville, R. Bonnard, C. Boudet, S. Denys, G. Govaert et al., Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale, Science of The Total Environment, vol.432, pp.297-308, 2012.
DOI : 10.1016/j.scitotenv.2012.06.001

URL : https://hal.archives-ouvertes.fr/hal-00933239

J. Caudeville, C. Boudet, S. Denys, R. Bonnard, G. Govaert et al., Caractérisation des inégalités environnementales en Picardie fondée sur l'utilisation couplée d'un modèle multimédia et d'un système d'information géographique, Environ. Risque. Sante, vol.10, 2011.

G. Rey, E. Jougla, A. Fouillet, and D. Hémon, Ecological association between a deprivation index and mortality in France over the period: Variations with spatial scale, degree of urbanicity, age, gender and cause of death, BMC Public Health, pp.10-1186, 1997.

P. Monestiez, L. Dubroca, E. Bonnin, J. P. Durbec, and C. Guinet, Comparison of Model Based Geostatistical Methods in Ecology: Application to Fin Whale Spatial Distribution in Northwestern Mediterranean Sea, Eds, vol.2, pp.777-786, 2005.
DOI : 10.1007/978-1-4020-3610-1_81

L. Anselin, Spatial Statistical Modeling in a GIS Environment, GIS, Spatial Analysis, and Modelling, pp.93-111, 2005.

C. Brunsdon, A. S. Fotheringham, and M. E. Charlton, Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity, Geographical Analysis, vol.33, issue.4, pp.281-298, 1996.
DOI : 10.1007/978-1-4899-4493-1

C. Brunsdon, A. S. Fotheringham, and M. Charlton, Spatial Nonstationarity and Autoregressive Models, Environment and Planning A, vol.41, issue.6, pp.957-973, 1998.
DOI : 10.1093/biomet/41.3-4.434

URL : http://eprints.maynoothuniversity.ie/6098/1/MC_Spacial%20nonstationarity.pdf

C. Brunsdon, A. S. Fotheringham, and M. Charlton, Geographically Weighted Regression, Journal of the Royal Statistical Society: Series D (The Statistician), vol.47, issue.3, pp.431-443, 1998.
DOI : 10.1111/1467-9884.00145

P. Goovaerts, Medical Geography: A??Promising Field of Application for Geostatistics, Mathematical Geosciences, vol.8, issue.4, pp.243-264, 2009.
DOI : 10.1111/j.1538-4632.1994.tb00318.x

A. S. Fotheringham, C. Brunsdon, and M. E. Charlton, Geographically Weighted Regression, 2002.
DOI : 10.4135/9780857020130.n13

S. Cockings and D. Martin, Zone design for environment and health studies using pre-aggregated data, Social Science & Medicine, vol.60, issue.12, pp.2729-2742, 2005.
DOI : 10.1016/j.socscimed.2004.11.005

J. Benach and Y. Yasui, Geographical patterns of excess mortality in Spain explained by two indices of deprivation, Journal of Epidemiology & Community Health, vol.53, issue.7, pp.423-431, 1999.
DOI : 10.1136/jech.53.7.423

V. Lorant, Inégalités socio-économiques de la mortalité dans les communes belges, Rev. Epidemiol. Sante Publ, vol.48, pp.239-247, 2000.

V. Carstairs, P. Elliott, J. Wakefield, and N. Best, Socio-economic factors at areal level and their relationship with health, Spatial Epidemiology, pp.51-67, 2000.
DOI : 10.1093/acprof:oso/9780198515326.003.0004

C. Declercq, E. Labbe, G. Poirier, and O. Lacoste, Inégalités Socio-spatiales de Mortalité Dans la Région Nord?Pas-de Available online, 2004.

J. T. Peterson, S. D. Greenberg, and P. A. Buffler, Non-asbestos-related malignant mesothelioma. A review, Cancer, vol.1, issue.5, pp.951-960, 1984.
DOI : 10.1080/00028896709342664

URL : http://onlinelibrary.wiley.com/doi/10.1002/1097-0142(19840901)54:5<951::AID-CNCR2820540536>3.0.CO;2-A/pdf

E. E. Glista-baker, A. J. Taylor, B. C. Sayers, E. A. Thompson, and J. C. Bonner, Nickel Nanoparticles Enhance Platelet-Derived Growth Factor???Induced Chemokine Expression by Mesothelial Cells via Prolonged Mitogen-Activated Protein Kinase Activation, American Journal of Respiratory Cell and Molecular Biology, vol.42, issue.4, pp.552-556, 2012.
DOI : 10.1165/rcmb.2010-0282OC

URL : http://europepmc.org/articles/pmc3488624?pdf=render

C. A. Gotway and L. J. Young, A Geostatistical Approach to Linking Geographically Aggregated Data From Different Sources, Journal of Computational and Graphical Statistics, vol.16, issue.1, pp.115-135, 2007.
DOI : 10.1198/106186007X179257

J. Nuckols, M. H. Ward, and L. Jarup, Using Geographic Information Systems for Exposure Assessment in Environmental Epidemiology Studies, Environmental Health Perspectives, vol.112, issue.9, pp.1007-1015, 2004.
DOI : 10.1289/ehp.6738

M. P. Parenteau and M. C. Sawada, The modifiable areal unit problem (MAUP) in the relationship between exposure to NO2 and respiratory health, International Journal of Health Geographics, vol.10, issue.1, 2011.
DOI : 10.1056/NEJMsa1103216