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Abstract 

Hypothesis. Surface tension of aqueous solutions of surfactants at their critical micelle concentrations 

(γCMC), may be quantitatively linked to the surfactant structure using Quantitative Structure Property 

Relationships (QSPR), all other factors held equal (temperature, presence of additive or salts). Thus, 

QSPR models can allow improved understanding and quantification of structure-γCMC trends, direct γCMC 

predictions, and finally help to design renewable substitutes for petroleum-based surfactants. 

Experiments and methods. A dataset of 70 γCMC of single surfactants at ambient temperature has been 

gathered from several research papers. Then, descriptors of the whole structure, of polar heads and of 

alkyl chains of the 70 surfactants were calculated and introduced in multilinear regressions to evidence 

the most predictive and physically meaningful structure property relationships. 

Findings. The best model, based on quantum chemical descriptors, achieved a standard error of 2.4 

mN/m on an external validation. Simpler models were also achieved based solely on the count of H 

atoms of the polar head but with prediction error of 2.9 mN/m. Among all identified factors affecting 

γCMC of sugar-based surfactants (polar head size, alkyl chain length and branching), polar head size was 

found to exhibit the only effect clearly taken into account by all the models. 
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1 Introduction 

In recent years, biorefinery [1] attracted a growing interest, for academic and industrial researchers, 

toward the access of chemical building blocks and specialties from renewable resources. Among the 

products than can be issued from biorefinery, surfactants are already quite well-implemented in the 

market, and notably sugar-based surfactants [2]. These compounds are amphiphilic molecules 

comprising at least one hydrophilic part, the polar head, and one hydrophobic part, the alkyl chain. They 

are present in many applications like detergents, cosmetics, inks, paints. They are also used to collect 

valuable materials such as minerals (froth flotation) and oil (Enhanced Oil Recovery), or to facilitate 

protein identification and analysis [3]. 

Sugar-based surfactants can be either directly obtained from biorefinery or indirectly, through renewable 

building blocks [4]. These surfactants are increasingly used as substitutes to conventional petroleum-

based ones (notably ethylene-oxide nonionic surfactants) due to their renewability and similar 

performances in applications [2]. Their structures can be very diverse and sometimes complex, 

consisting of polar heads with many alcohol moieties in particular configurations, pyranose cycles etc. 

[5]. To evidence the best sugar-based surfactant for target applications, large experimental screening 

should be performed. However, since such intensive experimental syntheses and characterizations are 

time and cost expensive, estimations of the relevant properties of possible candidates using predictive 

methods could be of particular interest to select the most promising ones for detailed experiment 

campaigns [6].  

The maximum effectiveness of surface tension reduction is a key indicator of surfactant performances, 

notably for applications requiring foaming and wetting abilities, like in detergents and cosmetics 

formulations [7, 8]. Indeed, the lowering of surface tensions originates from the ability of the surfactant 

to energetically favor the solvent/air interfaces. By the same way, energetically favorable interfaces also 

allow a better spreading of the liquid on hard surfaces.   
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The surface tension reduction reaches a maximum at the critical micelle concentration (CMC) and 

becomes almost constant at higher concentrations of surfactant in the aqueous solution. So, the surface 

tension at CMC (γCMC) is used to represent the effectiveness of the surfactant to lower the surface tension 

of the aqueous solution [7, 8].  

The key structure-property trend identified by experimentalists is the increase of γCMC with polar head 

size and, a decrease, lower in comparison, with the alkyl chain length [7]. A similarly low influence of 

the alkyl chain branching has also been observed with a decreasing effect on γCMC [7]. Quantifying the 

relationship between these structural elements and γCMC could help evidencing the relative contributions 

of the different structural elements and combine them in a single equation. Quantitative Structure 

Property Relationship (QSPR) approach can be used to achieve such quantification. QSPR models are 

statistical relationships between molecular structure and properties, using molecular descriptors (e. g., 

the number of O atoms). The only QSPR models developed including non-petrochemically derived 

surfactants were dedicated to CMC, and no QSPR model applicable to the prediction of γCMC of sugar-

based surfactants was identified in literature. Only three QSPR models, proposed by Wang et al. [9-11], 

were identified for the effectiveness in surface tension reduction of other classes of surfactants, such as 

anionic surfactants. Although good performances were obtained, with standard errors between 0.12 and 

0.88 mN/m (for databases of 20 to 34 surfactants), none of them were externally validated. Thus, it is 

not possible to estimate their predictive power. In that context, we developed new validated QSPR 

models to predict the γCMC of sugar-based surfactants as done for CMC, in a previous work [13]. We 

developed QSPR models with different types of descriptors: including quantum chemical descriptors, 

in order to access physically meaningful models, or only simple topological and constitutional 

descriptors to favor easy-to-use models. Moreover, in QSPR approach, alkyl chain and polar heads can 

be characterized separately through fragment-based molecular descriptors (for example, the number of 

C atoms in the alkyl chains or the molecular weight of the polar head), as already done, e. g., for CMC 

[13-15]. Thus, considering the particular structure of surfactants, both integral descriptors of the whole 

surfactants and fragment-based descriptors were investigated. At last, the final models were associated 
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to previous models for the prediction of CMC to access the full tensiometric curves of sugar-based 

surfactants under the thermodynamic framework of Abbott’s approach. 

2 Computational details 

2.1 Experimental dataset 

The number and quality of the experimental data used to develop a QSPR model are of primary 

importance to allow good fitting and validation. All uncertainty and lack of homogeneity into these data 

propagates into the final model leading to increased prediction errors. In the present case, 70 γCMC for 

aqueous solutions of sugar-based surfactants without additives (like salts) have been extracted from 

literature [9-11]. Only γCMC measured between 293K and 303K (i.e. close to room temperature) were 

considered, since temperature can influence γCMC values [16]. The aqueous solutions of the highest purity 

were also targeted, since impurities can affect γCMC values [8]. 

Moreover, whenever possible, the Krafft temperatures of the molecules were checked to be lower than 

298K, since surfactants exhibiting Krafft temperatures higher than 298K are not expected to form 

micelles at room temperature due to solubility issues [17]. In such case, no γCMC should be expected.  

It has to be kept in mind that some variance can still exist for γCMC measured by different 

experimentalists, as shown in Table 1. Some large discrepancies might even be observed, like the 

deviation of 11.6 mN/m between the gathered data for 6-O-Dodecanoylsucrose. Such discrepancy, of 

yet unclear origin, illustrates the need for a cautious selection of the data then used to train the models, 

in particular on solubility and purity of surfactants. However, other examples well illustrate the fact that 

residual uncertainty of several mN/m remains, even after these checks.  

<< TABLE 1 >> 

The final dataset was constituted of 70 different sugar-based surfactants (Table 2), with various polar 

heads (cyclic, acyclic and even mixed), with linear, branched and/or unsaturated alkyl chains, and with 

various linkages (ether, thioether, ester, amide and methylamide). The distribution of γCMC data is 

represented in Figure 1, with data ranging between 24.1 mN/m and 44.1 mN/m.  
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<< TABLE 2 >> 

<< FIGURE 1 >> 

In the perspective of the external validation of models, the dataset was divided into two parts. The 

training set used for the development of the model was constituted of 47 surfactants (representing 2/3 

of the dataset) whereas the validation set, used to evaluate the predictive power of the models was 

composed  of 23 surfactants (1/3 of the dataset). To ensure that the surfactants of the validation set are 

at best in the applicability domain of the model, this partition was performed by a property-ranged 

approach. Surfactants were classified by increasing order of γCMC and the ones of the validation set were 

regularly selected (e.g. 2nd, 5th, 8th etc.). The representativeness of the validation set in terms of the 

chemical diversity was also checked based on a Principal Component Analysis performed using the 

whole set of computed descriptors. As shown in Figure 2, the molecules of both the training and the 

validation sets revealed well-distributed in the global chemical space of the investigated surfactants.  

<< FIGURE 2 >> 

2.2 Molecular descriptors 

The molecular structures of the 70 studied sugar-based surfactants of the dataset were optimized using 

the Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level after preliminary conformation 

analyses and as defined in recent works, on the impact of the conformations of sugar-based surfactants 

on molecular descriptors [12]. Frequency calculations were performed at the same level of theory to 

ensure that each conformation corresponds to a local minimum, i.e. presenting no imaginary frequency. 

In the same way, the structures of the 31 hydrophilic (polar heads) and 20 hydrophobic (alkyl chains) 

fragments constituting the 70 molecules of the dataset were also optimized and checked by frequency 

calculations at B3LYP/6-31+G(d,p) level after, when necessary, specific conformation analyses. The 

separation between the polar head and the alkyl chain was set before the first heteroatom, as illustrated 

in Figure 3. Then, the fragments were hydrogen-saturated. The Gaussian09 [18] suite of programs was 

used for all these calculations. 
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<< FIGURE 3 >> 

It has to be noticed that some sugar-based surfactants were enantiomeric [19], diastereomeric [20], or 

anomeric [21, 22] mixtures in aqueous solution. Enantiomeric mixtures comprise surfactants with D- 

and L-sugar alcohol polar heads. Diastereomeric mixtures originate from surfactants with ramified alkyl 

chains, with one chiral carbon at the ramification. Finally, anomeric mixtures consist in surfactants with 

polar heads containing a free anomeric alcohol. For these isomeric mixtures, isomers were considered 

as different conformations of the same compound. So, the geometries of all relevant isomers were 

optimized and the most stable one was finally retained. 

Based on these quantum chemical structures (surfactants and fragments), more than 300 constitutional, 

topological, geometrical and quantum-chemical descriptors were computed using CODESSA software 

[23] for each surfactant and each fragment. Additional descriptors were also obtained directly from the 

quantum-chemical calculations like descriptors arising from conceptual DFT [24, 25] (electronegativity, 

hardness, softness and electrophilicity index), partial charges (notably on the polar head, calculated 

based on Mulliken [26] and Natural Populations Analyses [27] as implemented into Gaussian09 

software). Finally, 953 descriptors were calculated for each surfactant: 326 related to their entire 

structure and 627 related to their fragments (polar head and alkyl chain). 

2.3 Development and validation of the models 

All QSPR models developed in this study consist in Multi Linear Regressions (MLR) with the general 

form of Eq. 1: 

0CMC i i

i

a a D = +          (1)  

where Di is the descriptor i, and a0 is the regression coefficient of Di, and a0 is the intercept. 

To avoid building overfitted models, a descriptor selection was performed with the Best Multi-Linear 

Regression (BMLR) approach as implemented in CODESSA software [23]. This stepwise variable 

selection method has been deeply described in previous works [28, 29] and successfully used in 
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particular in a recent work for the CMC of sugar based surfactants [13]. Among the models proposed 

by the algorithm, the final model was chosen as the best compromise between correlation and number 

of descriptors to avoid any over-parameterization. 

The goodness of fit of the model was measured by the determination coefficient (R²), the mean absolute 

error (MAE) and the root mean square error (RMSE) between predicted and experimental values for the 

training set. Moreover, Student’s t-test at a confidence level of 95% was performed to check the 

relevance of each descriptor into the regression. 

Leave-one-out (LOO) and leave-many-out (LMO) cross-validations were used to assess the robustness 

of the model via the Q²CV, Q²3CV, Q²7CV and Q²10CV coefficients (for LOO, 3-fold, 7-fold and 

10-fold cross-validations, respectively). Robust models are expected to present high Q² values, close to 

R² and one close to each other.  

Moreover, to ensure that models did not issue from chance correlations, a Y-scrambling test [30] was 

realized. Random permutations of experimental property values within the training set were performed 

(500 iterations) and new models were refitted. To evaluate the impact of randomization, average (R²YS) 

and standard deviation (SDYS) in the R² of the new models were calculated. Low R²YS are expected to 

avoid chance correlation. Rücker [30] proposed that R²YS should be superior to 2.3 SDYS for a model to 

be considered as not issued from chance correlations.  

Then, an external validation was performed by applying the model to the molecules of the validation set 

to evaluate its predictive power. The coefficient of determination R²EXT, the mean absolute error MAEEXT 

and the root mean square error RMSEEXT were calculated. In addition, a series of external validation 

metrics were used: Q²F1 [31], Q²F2 [32], Q²F3 [33], CCC [34], mr² and Δr²m [35]. To estimate the 

reliability of a QSPR model from these metrics, some criteria have been proposed like the threshold 

values proposed by Chirico et al. [34]: R²EXT > 0.70, Q²Fn > 0.70, CCC > 0.85, mr² > 0.65, Δr²m < 0.20. 

At last, the applicability domain  (AD) [36, 37] of each model has been defined in terms of ranges of 

values of the calculated descriptors and the experimental property in the training set. All external 
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validation metrics presented above were calculated again considering only the molecules of the 

validation set  within the applicability domain (R²IN, MAEIN, RMSEIN, Q²F1,IN, Q²F2,IN, Q²F3,IN, CCCIN, 

mr² IN, Δr²m,IN) and represent the expected predictive power of the model, i.e. inside its applicability 

domain. 

3 Results and discussion 

Six new QSPR models were developed in this study depending on the type of descriptors used to build 

them. Three of them include integral descriptors, i.e. based on the whole surfactant molecule. One used 

all types of descriptors (i.e. including quantum-chemical descriptors); one was limited to topological 

and constitutional descriptors; the third one focused on constitutional descriptors to favor simpler 

models. The three other models were developed on the same scheme focusing on the fragment-based 

descriptors. The details and predictions issued from each model are available in Supporting Information 

(Tables S1-S7). 

3.1 Performances of the developed QSPR models 

Table 3 summarizes the performances of the different models developed in this study. The errors in 

prediction of the models range from 2.4 to 3.0 mN/m (in terms of RMSEIN). The best model includes 

integral quantum-chemical descriptors (i/all), with RMSEIN = 2.4 mN/m and R²IN = 0.78.  

Although this error is higher than expected experimental uncertainties using a single robust protocol 

(about 1 mN/m), this remains of the same order of magnitude than the observed variability among 

experimental γCMC values collected in the literature (e.g. with deviations within 2.5 mN/m and 2.9 mN/m 

for dodecanoyl-N-methylglucamine and N-dodecyl lactobionamide, respectively, as illustrated in Table 

1). As the models were developed on these collected data, observed errors in prediction are completely 

relevant and satisfactory.  

<< TABLE 3 >> 

The only model fulfilling all validation criteria of Chirico is the i/all model (a shown in Table S2). So 

this model, based on the integral descriptor and including quantum chemical ones, is recommended to 
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access the most accurate γCMC predictions. But it requires preliminary quantum chemical calculations 

that involve some theoretical chemistry knowledge and facilities (Gaussian software). In the perspective 

of in silico molecular design, simpler models were also looked for, to allow the fast screening of large 

number of molecular structures. In that context, the two models based only on simple constitutional 

descriptors (i/c and f/c in Table 4) present the advantage to be based on the only knowledge of the 

surfactant elemental composition to access first estimation of γCMC even if they did not fulfill all 

validation criteria of Chirico. Even if the quantum chemistry based model is recommended for final 

accurate prediction of γCMC or to evidence the change of γCMC only related to the alkyl chain, these simpler 

models allow faster screening of large series of virtual sugar-based surfactants to evidence those that 

could present a target range of γCMC. For these reasons, these three models were further analyzed. 

3.2 Model with all types of descriptors 

From the 326 integral descriptors calculated for the whole surfactant molecule, a five-parameter model 

(eq. 2) was found as the best compromise between correlation and number of descriptors among the 

15 equations sorted out by the BMLR method: 

CMC = 1.014 nO – 66.8 VO,avg – 444.0 HACA1,TMSA + 5.45 qhead – 132.6 nH,rel + 234.58 (2) 

with nO the number of O atoms, VO,avg the average valency of a O atom, HACA1,TMSA the relative hydrogen 

acceptor charged surface area, qhead the Mulliken partial charge of the polar head, and nH,rel the relative 

number of H atoms.  

The model is characterized by good fitting (R² = 0.92, RMSE = 1.4 mN/m) and robustness 

(Q²LOO = Q²10CV = Q²7CV = Q²3CV = 0.90). Moreover, the criterion of Rücker [30] for Y-scrambling 

validation is fulfilled (R² - R²YS = 0.81 > 2.3SDYS = 0.15) ensuring against chance correlation. 

As shown in Figure 4, a good predictive power is also obtained for the 18 molecules in AD out of the 

23 molecules of the validation set (R²IN = 0.78, RMSEIN = 2.4 mN/m, Q²F1,IN = 0.74, Q²F2,IN = 0.73, 

Q²F3,IN = 0.76, CCCIN = 0.86, mr² IN = 0.69, Δrm²IN = 0.10), all the criteria of Chirico et al. [34] being 

satisfied.  
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<< FIGURE 4 >> 

When analyzing deeper the five molecules falling out of AD (presented in Table 4), four of them 

presented values of descriptors out of AD, but very close to the AD limits. Besides, for these surfactants, 

calculated CMC revealed close to experiments. The last one, octyl glycol (Figure 5) presents a larger 

error (6.8 mN/m) and is also the only one to be significantly out of AD for several variables. This could 

be due to its particularly small polar head, with only one free alcohol moiety. So, the model may be less 

efficient for such surfactants and it is not surprising to find them out of its AD. 

<< TABLE 4 >> 

<< FIGURE 5 >> 

According to the t-test values, the descriptor contributing the most to the prediction of γCMC in the model 

is the number of oxygens nO, with predicted γCMC increasing with nO. In sugar-based surfactants, which 

are polyhydroxylated, usually, the larger the surfactant, the larger is the number of oxygen atoms. So, 

nO seems to account for the size of the polar head (as illustrated in Figure S1), in agreement with the 

main identified trend that γCMC increases with the size of the polar head. Besides, the same structural 

trend is involved in the main descriptors of the six models developed in this study (as shown in Figures 

S1-S5). 

A secondary structural trend is identified in this model. The relative number of H atoms, nH,rel, increases 

with the length of the alkyl chain for an identical polar head. Thus, this descriptor might contribute to 

account for the impact of the alkyl chain length on γCMC.  

3.3 Models with constitutional descriptors 

In the perspective of faster estimation of γCMC, without any quantum chemical calculation, two 

alternative models, based on constitutional descriptors, were also highlighted. 

The first, two-parameter, model (in Eq. 3) was chosen among the 6 equations sorted out by the BMLR 

method when focusing on the only 36 constitutional integral descriptors: 
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CMC = 1.026 nO + 1.838 nN + 22.84       (3) 

with nO the number of O atoms and nN
 the number of N atoms. 

A fitting with experimental data was obtained at a level of R² of 0.78 and RMSE = 2.2 mN/m. This 

model proved to be robust in cross-validation with Q²CV = Q²10CV = Q²3CV = 0.75 and Q²7CV = 0.77. The 

Y-scrambling ensured that the model was not issued from chance correlation since low values of R² 

were found for the models obtained after randomization with R²YS = 0.04 and SDYS = 0.04. 

As noticed in previous section, the predictive performances of the model revealed lower than Eq. 2, and 

did not fulfill the criteria of Chirico: R²IN = 0.67, Q²F1,IN = 0.60, Q²F2,IN = 0.60, Q²F3,IN = 0.64, 

CCCIN = 0.76, mr² IN = 0.52,  Δrm²IN = 0.27 (as illustrated in Figure 6). 

<< FIGURE 6 >> 

The last developed model was obtained focusing on the 76 constitutional fragment-based descriptors. 

The best compromise between correlation and number of descriptors was identified as the simple 

one-parameter model in Eq. 4. 

CMC = 0.568 nH,h + 21.86        (4) 

with nH,h the number of hydrogen atoms of the polar head.  

The fitting performance on the training set was similar to Eq. 3, with R² = 0.81 and RMSE = 2.1 mN/m 

and a good robustness was characterized by cross-validation with Q²CV = 0.79, Q²10CV = 0.79, Q²7CV = 

0.80 and Q²3CV = 0.80. The predictive power was lower than Eq. 2, with RMSEIN = 2.9 mN/m (cf. Figure 

7) and none of the Chirico criteria were fulfilled (R²IN = 0.69, Q²F1,IN = 0.60, Q²F2,IN = 0.60, Q²F3,IN = 0.64, 

CCCIN = 0.75, mr² IN = 0.51, Δrm²IN = 0.28). 

<< FIGURE 7 >> 

With its small polar head, octyl glycol was the only surfactant of the validation set out of the applicability 

domain of both models, with a slightly too small number of hydrogen and oxygen atoms in its polar 
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head (6 vs. AD range of [8;42] for nH,h and 2 vs. AD range of [3;22] for nO), even if its error revealed 

small for both models (1.8 for Eq. 3 and 1.4 mN/m for Eq. 4).  

In these two equations, the main descriptors, nO and nH,h (in Eq. 3 and Eq. 4, respectively), quantify the 

increase of γCMC with polar head size (as shown in Figures S1 and S5, respectively). Moreover, it is 

interesting to note the presence of nN in Eq. 4. With its positive regression coefficient (+1.838), this 

descriptor seems to account for the contribution of amide or amine moieties to increase the polar head 

size (which itself is observed to increase γCMC). Thus, it can be argued that both models only reflect the 

impact of polar head size on γCMC, which confirms polar head size as the dominant structural factor when 

compared to others such as alkyl chain length or branching.  

To the end, although the statistical performances of Eq. 3 and 4 are lower than those of Eq. 2, they can 

be useful for pre-screening purposes, as only the raw formula of the polar head, e.g. C6H12O6, is needed 

to apply them and obtain a first estimation of CMC, with a standard error in prediction of 2.9-3.0 mN/m.    

3.4 Application: prediction of tensiometry curves. 

In our recent work [13], two QSPR models have been proposed to predict the critical micelle 

concentration of sugar-based surfactants. The first one (in Eq. 5) included quantum chemical descriptors 

of the whole structure of surfactant with a low error in prediction of RMSEIN = 0.32 (log). 

log CMC = -1.83 1AIC – 3.70 2ACIC + 3.99·10-2  + 0.209 Te + 1.08   (5) 

with 1AIC the Average Information Content of order 1, 2ACIC the Average Complementary Information 

Content of order 2, η the hardness, and Te the topographic electronic index calculated from all atomic 

pairs using Zefirov’s partial charge model [38]. 

The second one (in Eq. 6) is a simpler fragment-based model including only constitutional descriptors 

with a slightly higher error in prediction with RMSEIN = 0.36 (log). 
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log CMC = -20.00 nrel,S,h – 2.65·10-2 Mw,c – 63.78 nrel,single,c + 64.75   (6) 

with nrel,S,h the relative number of S atoms in the polar head, Mw,c the molecular weight of the alkyl chain  

and nrel,single,c the relative number of single bonds in the alkyl chain. 

Based on these models for CMC and the new ones for γCMC, it is possible to predict the surface tension 

of the aqueous solution as a function of surfactant concentration (i.e. tensiometry curves) by using the 

approximations of the web interactive model of Abbott [39], presented in his book [40].  

In the first assumption, the surface tension is linked to the concentration curve under the consideration 

of the Langmuir-Szyszkowski isotherm by Eq. 7. 

γ = γw – RT Гm ln(1 + KC)         (7) 

in which γ is the surface tension (in N/m), γw is the surface tension of water (0.0728 N/m at 298 K), R 

is the ideal gas constant (8.314 J/K/mol), T is the temperature (in K), Γm is the limiting surface 

concentration, K is the absorption constant (in L/mol), and C is the concentration (in mol/L). 

In his second assumption, Abbott considers that the surfactant concentration resulting in a 20 mN/m 

surface tension decrease (C20) is ten times lower than CMC. At last, the third assumption considered, 

based on Rosen’s work [7], that, starting from C20, the surface is saturated in surfactants and that surface 

tension becomes constant after CMC. Based on these three assumptions, a series of equations, 

summarized in Eqs. 8 and 9, were derived allowing a1ccess to Γm and K. 

( )
0.02

ln 0.1

CMC w
m

RT

 + −
 =

        (8) 

exp 1w CMC

mRT
K

CMC

  −
− 

 =
        (9) 

Thus, using Eqs. 8 and 9 in combination with Eq. 7, the entire tensiometry curve can be estimated for a 

given surfactant only from the knowledge of CMC and γCMC, for instance from QSPR models. In this 

study, this approach was tested for nine surfactants using either experimental values of γCMC and CMC 
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or predicted ones (from the quantum chemical models, Eqs. 2 and 5 or from simpler ones, Eqs. 4 and 

6). Calculation parameters and results are provided in Supporting Information (Table S8). 

The nine investigated surfactants were selected since they were included in the validation sets of both 

the models for CMC and for γCMC, and sufficiently detailed surface tension/concentration curves (i.e. 

with at least 8 or 9 experimental data points) were available for all of them. These surfactants are quite 

structurally diverse, including one or two cyclic and/or acyclic sugar units in the polar heads, short to 

long alkyl chains, and with different kinds of linkages, as illustrated in Supporting Information (Figure 

S6). 

From a general point of view, relatively good agreement was found between experimental and predicted 

surface tensions on the tensiometric curves proposed in Supporting Information (Figures S7-S15). As 

shown in Table 5, low errors were obtained from Abbott’s assumptions alone, i.e. from experimental 

values of CMC and γCMC, demonstrating the relevance of the approach for the studied sugar-based 

surfactants.  

<< TABLE 5 >> 

The Abbott’s assumption failed only for one surfactant, S-hexyl-1-thio-D-lyxitol, as shown in Figure 

S14. For this case study, surface tension decrease more with concentration than expected. The 

hypothesis of reduction of 20 mN/m at 10% of CMC may be not valid. 

When using predicted values of CMC and γCMC, the observed deviations are in line with the prediction 

errors on these two parameters. Low errors on both properties result in a good agreement between the 

calculated curve and the experimental data, as for nonyl-β-D-glucoside in Figure 8(a). Then, larger 

errors on CMC lead to a shifting of the breaking point (associated to CMC), as seen for N-decyl-N-

methyl gluconamide in Figure 8(b). Errors on γCMC affect more particularly the surface tensions at 

concentrations higher than CMC by increasing or decreasing the surface tension at this constant level, 

as in the case of S-octyl 1-thio-D-lyxitol in Figure 8 (c).  

<< FIGURE 8 >> 
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Overall, it can be seen that combining the Abbott’s approximations with predicted CMC and CMC from 

QSPR models represents a promising approach to estimate tensiometry curves of sugar-based 

surfactants from the only knowledge of their molecular structure.   

4 Conclusion 

In this study, QSPR models for the prediction of γCMC of sugar-based surfactants are proposed.  The 

model presenting the highest predictive power included quantum chemical descriptors. Easier to use but 

less predictive models were obtained with only constitutional descriptors. Their detailed analyses 

confirmed that γCMC can be predicted from the sole molecular structures of sugar-based surfactants, for 

single surfactant solutions at ambient temperature, and enabled to better elucidate structural trends. 

Specifically, all models emphasize the primary role of polar head size for γCMC estimation with respect 

to other structural factors (especially in the simplest ones), possibly masked by the experimental 

uncertainty, and quantify its impact on γCMC. Associated with predictive models of CMC, these models 

even allow an estimation of the entire tensiometric curves of a surfactant from the only knowledge of 

its molecular structure using the Abbott’s approximations. The developed models thus yield useful 

information that may contribute to anticipate foaming and wetting potentials of surfactant solutions at 

various concentrations. Previous QSPR models were proposed for γCMC of ethylene oxide derivatives [9, 

11], alkyl sulfonates and alkyl sulfates [10], but none of them were applicable to sugar-based surfactants. 

So, these models fill a gap in the anticipation of the properties of these promising alternatives to 

petroleum-based surfactants. To improve the predictive capabilities of these new models, systematic 

series of measurements using homogeneous methods, carried out on surfactants solutions of highest 

possible purity and confirmed water solubility, would be beneficial, in particular to be able to better take 

into account secondary structural trends like alkyl chain length and branching. However, as 

demonstrated in this study, these models, complementary to previous predictive models of CMC [13, 

41], represent powerful tools towards a faster design of bio-based sugar-based surfactants even before 

their synthesis.  
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Table 1. Different γCMC values gathered in literature for the same surfactants. 

surfactant γCMC (mN/m) reference 

Octyl-β-D-Glucoside 

30.5 [42] 

30.8 [21] 

31.0 [43] 

31.2 [44] 

Dodecanoyl-N-methyl Glucamine 
27.5 [45] 

30.0 [46] 

N-Dodecyl Lactobionamide 
35.1 [47] 

38.0 [21] 

6-O-Dodecanoyl Sucrose 

31.5 [48] 

37.4 [49] 

43.1 [50] 
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Table 2. Experimental γCMC data. 

surfactant γCMC (mN/m) T (K)a setb reference  

S-Octyl 5-Thio-D-Arabinonolactone 24.1 293 T [51]  

Octyl-D,L-Glycerol 24.5 298 V [43]  

1-Butylhexyl-β-D-Glucoside 25.1 298 T [20]  

S-Hexyl 5-Thio-D-Arabinonolactone 25.1 293 T [51]  

1-O-Nonanoyl-D,L-Xylitol 25.4 298 V [19]  

S-Octyl 5-Thio-D-Xylonolactone 25.7 293 T [51]  

1-O-Decanoyl-D,L-Xylitol 26.0 298 V [19]  

1-Propylheptyl-β-D-Glucoside 26.0 298 T [20]  

Dodecanoyl-N-Methylglyceramine 26.1 298 T [46]  

S-Hexyl 5-Thio-D-Xylonolactone 26.3 293 T [51]  

Octyl Glycol 26.7 298 V [43]  

1-Ethyloctyl-β-D-Glucoside 27.0 298 T [20]  

S-Hexyl 1-Thio-L-Ribitol 27.2 293 T [51]  

3,7-Dimethyloctyl-β-D-Glucoside 27.7 298 V [52]  

1-Methylnonyl-β-D-Glucoside 28.0 298 V [20]  

Decyl-β-D-Galactoside 28.0 298 T [42]  

Dodecanoyl-N-Methylxylamine 28.0 298 T [46]  

S-Hexyl 1-Thio-L-Xylitol 28.2 293 T [51]  

Dodecyl-α-D-Mannoside 28.4 298 T [42]  

6-O-[(Hexyloctyl)-3-Propylsulfide)ethanoyl]-D-Mannose 28.5 298 T [22]  

Decyl-α-D-Mannoside 28.5 298 V [42]  

Decyl-β-D-Glucoside 28.5 298 T [53]  

1-O-Octanoyl-D,L-Xylitol 28.6 298 V [19]  

Octyl-β-D-Thioglucoside 28.7 298 T [54]  

Octanoyl-β-D-Galactosylamine 29.3 298 T [55]  

S-Octyl 1-Thio-D-Lyxitol 29.3 293 V [51]  

Pentyl Isosorbide 29.8 298 T [56]  

1-O-Heptanoyl-D,L-Xylitol 30.0 298 T [19]  

1-O-Pentanoyl-D,L-Xylitol 30.0 298 T [19]  

S-Hexyl 1-Thio-D-Lyxitol 30.0 293 V [51]  

2-Amino-2-Deoxy-Nonyl-β-D-Glucoside 30.2 298 T [57]  

Nonyl-β-D-Glucoside 30.4 293 V [58]  

Octyl-α-D-Mannoside 30.5 298 T [42]  

Octyl-β-D-Galactoside 30.5 298 V [42]  

Octyl-β-D-Glucoside 30.5 298 T [42]  

Dodecyl-β-D-Galactoside 31.5 298 T [42]  

Octyl-D-Maltonamide 31.8 298 T [59]  

Butyl Isosorbide 32.1 298 V [56]  

Hexyl-D-Maltonamide 32.2 298 T [59]  

2-Amino-2-Deoxy-Octyl-β-D-Glucoside 32.5 298 V [57]  

Decanoyl-N-Methylglucamine 32.5 303 T [60]  

Nonanoyl-N-Methylglucamine 32.9 303 T [61]  

Decyl-D-Lactobionamide 33.0 298 T [47]  
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1-O-Hexanoyl-D,L-Xylitol 33.2 298 V [19]  

Dodecyl-D-Maltonamide 33.6 298 T [59]  

3,7-Dimethyloctyl-β-D-Maltoside 33.7 298 T [52]  

Decyl-D-Maltonamide 33.9 298 V [59]  

N-Octadecyl-N-Methyl Lactobionamide 34.6 293 T [62]  

N-Oleyl-N-Methyl Gluconamide 34.8 293 T [62]  

N-Tetradecyl-N-Methyl Gluconamide 35.0 293 V [62]  

[N-(Oleoyl)-2 -Ethylamino]-β-D-Maltoside 35.1 298 T [63]  

N-Dodecyl-N-Methyl Gluconamide 35.2 293 T [62]  

Dodecyl-β-D-Maltoside 35.3 295 V [64]  

Decyl-β-D-Maltoside 35.6 298 T [53]  

N-Hexadecyl-N-Methyl Lactobionamide 35.6 293 T [62]  

N-Tetradecyl-N-Methyl Lactobionamide 35.7 293 V [62]  

N-Oleyl-N-Methyl Lactobionamide 35.8 293 T [62]  

N-Dodecyl-N-Methyl Lactobionamide 36.0 293 T [62]  

N-Decyl-N-Methyl Gluconamide 36.7 298 V [62]  

N-Tetradecanoyl-N-Methyl Lactitolamine 37.0 298 T [65]  

N-Dodecanoyl-N-Methyl Lactitolamine 37.2 298 T [65]  

6-O-Dodecanoylsucrose 37.4 293 V [49]  

Oleyl-β-D-Maltoside 37.8 298 T [63]  

N-Decyl-N-Methyl Lactobionamide 38.9 293 T [62]  

6'-O-Dodecanoylmaltose 39.0 295 V [21]  

3,7-Dimethyloctyl-β-D-Maltotrioside 39.6 298 T [52]  

N-Decanoyl-N-Methyl Lactitolamine 40.3 298 T [65]  

Oleyl-β-D-Maltotrioside 42.5 298 V [63]  

6-O-Dodecanoylstachyose 43.0 293 T [49]  

6-O-Dodecanoylraffinose 44.1 293 T [49]  
a measurement temperature; b T for training set, V for validation set. 
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Table 3. Summary of the performances of the new QSPR models for surface tension at critical 

micelle concentration of sugar-based surfactants 

 model ndesc R² RMSE 

(mN/m) 

R²IN RMSEIN 

(mN/m) 

nout 

i/all integral/all types (Eq. 2) 5 0.92 1.4 0.78 2.4 5 

i/ct integral/constitutional and topological 1 0.75 2.4 0.65 3.0 2 

i/c integral/constitutional (Eq. 3) 2 0.78 2.2 0.67 2.9 1 

f/all fragments/all types 2 0.87 1.8 0.76 2.6 1 

f/ct fragments/constitutional and topological 3 0.84 1.9 0.70 2.6 2 

f/c fragments/constitutional (Eq. 4) 1 0.81 2.1 0.69 2.9 1 
ndesc: number of descriptors; nout: number of molecules of the validation set out of AD of the model 
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Table 4. Surfactants out of the AD of Eq. 2 

surfactant 
out of AD  

variable(s) 
AD ranges 

calculated  

γCMC 

 (mN/m) 

experimental 

γCMC 

(mN/m) 

Octyl Glycol 

nO = 2 

nH,rel = 0.65 

γCMC,pred = 19.9 

nO: [3 ; 22] 

nH,rel: [0.52  ; 0.63] 

γCMC,pred: [24.1 ; 44.1] 

19.9 26.7 

Octyl-D,L-Glycerol nH,rel = 0.64 nH,rel: [0.52 ; 0.63] 23.6 24.5 

S-Hexyl 1-thio-D-Lyxitol VO,avg = 1.7528 VO,avg: [1.7557 ; 1.9500] 29.2 30.0 

S-Octyl 1-thio-D-Lyxitol VO,avg = 1.7528 VO,avg: [1.7557 ; 1.9500] 29.7 29.3 

Dodecyl-β-D-Maltoside qhead = 0.5719 qhead: [ -0.6052 ; 0.5532] 37.1 35.3 
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Table 5. MAE for the surface tensions of surfactant solutions predicted by the Abbott’s approach 

from experimental CMC and γCMC (exp) or using predicted ones from quantum chemical models 

(qc) or from constitutional ones (simple) 

Surfactant ref ndata 

exp qc simple 

MAE 

(mN/m) 

MAE 

(mN/m) 

Δlog 

CMCa 

(mol/L) 

ΔγCMC
a 

(mN/m) 

MAE 

(mN/m) 

Δlog 

CMCa 

(mol/L) 

ΔγCMC
a 

(mN/m) 

6-O-dodecanoylsucrose [49] 9 0.6 1.3 0.16 1.3 1.1 0.17 3.1 

nonyl-β-D-glucoside [58] 8 0.4 1.2 0.16 0.4 3.1 0.27 1.7 

N-decyl-N-methyl gluconamide [62] 15 1.5 3.9 0.03 4.5 3.7 0.09 6.3 

N-tetradecyl-N-methyl gluconamide [62] 10 0.6 1.2 0.11 2.6 3.6 0.34 4.6 

N-tetradecyl-N-methyl lactobionamide [62] 10 0.9 5.2 0.46 0.8 1.8 0.15 0.3 

1-O-hexanoyl-D,L-xylitol [19] 8 0.7 3.4 0.31 4.4 3.5 0.30 4.5 

1-O-nonanoyl-D,L-xylitol [19] 10 0.9 2.2 0.01 2.9 5.2 0.30 3.3 

S-hexyl 1-thio-D-lyxitol [51] 9 5.6 2.7 0.46 0.8 3.0 0.48 1.3 

S-octyl 1-thio-D-lyxitol [51] 8 1.0 6.4 0.56 0.4 3.2 0.22 0.6 

a) Δlog CMC and ΔγCMC : absolute deviation in prediction for log CMC and γCMC, respectively.  
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Figure 1. Distribution of γCMC data within the dataset. 
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Figure 2. Repartition of molecules of training (circles) and validation (triangles) sets in the whole 

chemical space of the dataset as defined by Principal Component Analysis based on all calculated 

descriptors 
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Figure 3. Definition of fragments for the polar head and the alkyl chain for Octyl-β-D-Glucoside. 
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Figure 4. Experimental vs. calculated CMC for the model based on integral descriptors of all types 

(Eq. 2) 
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Figure 5. Octyl Glycol and Octyl-D,L-Glycerol 
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Figure 6. Experimental vs. calculated CMC for the model based on constitutional integral 

descriptors (Eq. 3) 
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Figure 7. Experimental vs. calculated CMC for the model based on constitutional fragment-based 

descriptors (Eq. 4) 
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Figure 8. Predicted tensiometric curves vs. experimental tensiometric data for (a) Nonyl-β-D-

Glucoside [58], (b) N-Decyl-N-methyl Gluconamide [62], (c) S-Octyl 1-thio-D-Lyxitol [51]. 

 

 

 

 

 

 

 


