D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environment International, vol.77, pp.132-147, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01344057

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, Journal of Nanoparticle Research, vol.14, pp.1-11, 2012.

J. Chapman, T. Sullivan, and F. Regan, Nanoparticles in Anti-microbial Materials : Use and Characterisation, 2012.

B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-urrea, C. Metcalfe et al., Potential scenarios for nanomaterial release and subsequent alteration in the environment, Environmental toxicology and chemistry / SETAC, pp.50-59, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426190

R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller et al., Release of silver nanoparticles from outdoor facades, vol.158, pp.2900-2905, 2010.

K. Schlich, T. Klawonn, K. Terytze, and K. Hund-rinke, Hazard assessment of a silver nanoparticle in soil applied via sewage sludge, Environmental Sciences Europe, p.1, 2013.

C. C. Daigle, D. C. Chalupa, F. R. Gibb, P. E. Morrow, G. Oberdorster et al., Ultrafine particle deposition in humans during rest and exercise, 2003.

R. D. Handy and B. J. Shaw, Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology, p.125, 2007.

A. Lapresta-fernandez, A. Fernandez, and J. Blasco, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, Trac-Trend Anal Chem, vol.32, pp.40-59, 2012.

A. Menard, D. Drobne, and A. Jemec, Ecotoxicity of nanosized TiO2. Review of in vivo data, Environ Pollut, vol.159, pp.677-684, 2011.

A. Kahru and H. C. Dubourguier, From ecotoxicology to nanoecotoxicology, Toxicology, vol.269, pp.105-119, 2010.
DOI : 10.1016/j.tox.2009.08.016

A. D. Maynard, R. J. Aitken, T. Butz, V. Colvin, K. Donaldson et al., Safe handling of nanotechnology, vol.444, pp.267-269, 2006.
DOI : 10.1038/444267a

Z. Clemente, V. L. Castro, M. A. Moura, C. M. Jonsson, and L. F. Fraceto, Toxicity assessment of TiO(2) nanoparticles in zebrafish embryos under different exposure conditions, Aquat Toxicol, vol.147, pp.129-139, 2014.
DOI : 10.1016/j.aquatox.2013.12.024

Z. Clemente, V. L. Castro, L. O. Feitosa, R. Lima, C. M. Jonsson et al., Fish exposure to nano-TiO2 under different experimental conditions: Methodological aspects for nanoecotoxicology investigations, Science of The Total Environment, pp.647-656, 2013.
DOI : 10.1016/j.scitotenv.2013.06.022

C. Gunawan, A. Sirimanoonphan, W. Y. Teoh, C. P. Marquis, and R. Amal, Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii, J Hazard Mater, vol.260, pp.984-992, 2013.

F. Hong, X. Zhao, W. Si, Y. Ze, L. Wang et al., Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO exposure, J Hazard Mater, vol.300, pp.718-728, 2015.

G. Gao, Y. Ze, X. Zhao, X. Sang, L. Zheng et al., Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice, J Hazard Mater, pp.133-143, 2013.
DOI : 10.1016/j.jhazmat.2013.04.046

L. Sheng, L. Wang, X. Sang, X. Zhao, J. Hong et al., Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology, J Hazard Mater, vol.278, pp.180-188, 2014.
DOI : 10.1016/j.jhazmat.2014.06.005

S. Gui, Z. Zhang, L. Zheng, Y. Cui, X. Liu et al., Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles, J Hazard Mater, vol.195, pp.365-370, 2011.

R. Hu, L. Zheng, T. Zhang, G. Gao, Y. Cui et al., Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles, J Hazard Mater, vol.191, pp.32-40, 2011.

Z. Luo, Z. Wang, Q. Wei, C. Yan, and F. Liu, Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications, J Hazard Mater, vol.192, pp.1364-1369, 2011.

H. Liu, D. Yang, H. Yang, H. Zhang, W. Zhang et al., Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: Silver, zinc oxide and titanium dioxide, Journal of Hazardous Materials, pp.478-486, 2013.
DOI : 10.1016/j.jhazmat.2013.01.046

A. Al-kattan, A. Wichser, R. Vonbank, S. Brunner, A. Ulrich et al., Characterization of materials released into water from paint containing nano-SiO2, Chemosphere, vol.119, pp.1314-1321, 2015.
DOI : 10.1016/j.chemosphere.2014.02.005

J. Labille, J. Feng, C. Botta, D. Borschneck, M. Sammut et al., Aging of TiO(2) nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment, Environ Pollut, vol.158, pp.3482-3489, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01519536

N. Shandilya, O. Le-bihan, C. Bressot, and M. Morgeneyer, Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Environ Sci Technol, vol.49, pp.2163-2170, 2015.
URL : https://hal.archives-ouvertes.fr/ineris-01855008

U. Olofsson, L. Olander, and A. Jansson, Towards a model for the number of airborne particles generated from a sliding contact, Wear, vol.267, pp.2252-2256, 2009.

M. Vorbau, L. Hillemann, and M. Stintz, Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings, Journal of Aerosol Science, vol.40, pp.209-217, 2009.

S. Stewart and R. Ahmed, Rolling contact fatigue of surface coatings-a review, Wear, vol.253, pp.1132-1144, 2002.
DOI : 10.1016/s0043-1648(02)00234-x

URL : http://home.eps.hw.ac.uk/~mcera/Publications/Journal-Papers/WEAR-SS-2002-Vol253-1.pdf

N. Govindarajan and R. Gnanamoorthy, Study of damage mechanisms and failure analysis of sintered and hardened steels under rolling-sliding contact conditions, Mat Sci Eng a-Struct, vol.445, pp.259-268, 2007.
DOI : 10.1016/j.msea.2006.09.039

Y. Ding and N. F. Rieger, Spalling formation mechanism for gears, Wear, vol.254, pp.1307-1317, 2003.
DOI : 10.1016/s0043-1648(03)00126-1

W. Wohlleben, S. Brill, M. W. Meier, M. Mertler, G. Cox et al., On the Lifecycle of Nanocomposites: Comparing Released Fragments and their In-Vivo Hazards from Three Release Mechanisms and Four Nanocomposites, vol.7, pp.2384-2395, 2011.

D. Gohler, M. Stintz, L. Hillemann, and M. Vorbau, Characterization of nanoparticle release from surface coatings by the simulation of a sanding process, Ann Occup Hyg, vol.54, pp.615-624, 2010.

B. J. Thio, D. Zhou, and A. A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, J Hazard Mater, vol.189, pp.556-563, 2011.

H. Godwin, C. Nameth, D. Avery, L. L. Bergeson, D. Bernard et al.,

M. Cohen, C. O. Doa, P. Hendren, K. Holden, A. B. Houck et al.,

M. B. Malloy, J. Miller, G. Muller, E. J. Oberdorster, R. C. Petersen et al., Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making, ACS Nano, pp.3409-3417, 2015.

D. H. Brouwer, G. Lidén, C. Asbach, M. G. Berges, and M. Van-tongeren, Chapter 5-Monitoring and Sampling Strategy for (Manufactured) Nano Objects, Agglomerates and Aggregates (NOAA): Potential Added Value of the NANODEVICE Project, Handbook of Nanosafety, pp.173-206, 2014.

I. and X. P. Iso, TS 12901-1 Nanotechnologies-Occupational risk management applied to engineered nanomaterials-Part 1: Principles and approaches, p.37, 2012.

C. L. Bianchi, S. Gatto, C. Pirola, M. Scavini, S. Vitali et al., Micro-TiO2 as a starting material for new photocatalytic tiles, Cement and Concrete Composites, vol.36, pp.116-120, 2013.

R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser et al., Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Environ Pollut, vol.156, pp.233-239, 2008.

J. P. Kaiser, S. Zuin, and P. Wick, Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion, Sci Total Environ, vol.442, pp.282-289, 2013.

M. J. Hanus and A. T. Harris, Nanotechnology innovations for the construction industry, Progress in Materials Science, vol.58, pp.1056-1102, 2013.

D. Synnott, N. Nolan, D. Ryan, J. Colreavy, and S. C. Pillai, 14-Self-cleaning tiles and glasses for eco-efficient buildings, Nanotechnology in Eco-Efficient Construction, pp.327-342, 2013.

A. Fujishima, X. T. Zhang, and D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, vol.63, pp.515-582, 2008.

L. Y. Hsu and H. M. Chein, Evaluation of nanoparticle emission for TiO2 nanopowder coating materials, Journal of Nanoparticle Research, vol.9, pp.157-163, 2007.

S. J. Froggett, S. F. Clancy, D. R. Boverhof, and R. A. Canady, A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Particle & Fibre Toxicology, vol.11, pp.1-28, 2014.

E. Sánchez, J. García-ten, V. Sanz, and A. Moreno, Review: Porcelain tile: Almost 30 years of steady scientifictechnological evolution, Ceramics International, vol.36, pp.831-845, 2010.

M. Dondi, G. Ercolani, C. Melandri, C. Mingazzini, M. Marsigli-;-germany et al., The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties, pp.75-83, 1999.

J. Martin-marquez, J. M. Rincon, and M. Romero, Effect of firing temperature on sintering of porcelain stoneware tiles, Ceramics International, vol.34, pp.1867-1873, 2008.

D. B. Warheit, How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles, Toxicology Letters, vol.220, pp.193-204, 2013.

, Standard test methods for dry abrasion mar resistance of high gloss coatings ASTM D6037, 1996.

, ASTM International Standard test method for the abrasion of organic coatings by the Taber abradant ASTM D4060, 2007.

, ASTM International Standard test method for resistance of transparent plastics to surface abrasion, ASTM D1044, 2008.

M. M. Hassan, H. Dylla, L. N. Mohammad, and T. Rupnow, Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement, Construction and Building Materials, 2010.

N. Shandilya, O. Le-bihan, C. Bressot, and M. Morgeneyer, Evaluation of the particle aerosolization from n-tio2 photocatalytic nanocoatings under abrasion, Journal of Nanomaterials, vol.185080, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01863936

L. Bihan, O. Morgeneyer, M. Shandilya, N. Aguerre-chariol, O. et al., 2-Emission chambers, a method for nanosafety, Effect of the Normal Load on the Release of Aerosol Wear Particles During Abrasion, vol.55, pp.227-234, 2014.

B. R'mili, O. L. Le-bihan, C. Dutouquet, O. Aguerre-charriol, and E. Frejafon, Particle Sampling by TEM Grid Filtration, vol.47, pp.767-775, 2013.

N. Shandilya, O. Le-bihan, and M. Morgeneyer, Effect of the Normal Load on the Release of Aerosol Wear Particles During Abrasion, Tribol Lett, vol.55, pp.227-234, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01855584

I. K. Koponen, K. A. Jensen, and T. Schneider, Sanding dust from nanoparticle-containing paints: Physical characterisation, Journal of Physics: Conference Series, vol.151, p.12048, 2009.
DOI : 10.1088/1742-6596/151/1/012048

URL : http://iopscience.iop.org/article/10.1088/1742-6596/151/1/012048/pdf

F. Gottschalk, B. Nowack, ;. Manier, A. Bado-nilles, P. Delalain et al., Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae, J Environ Monit, vol.13, pp.63-70, 2011.