The influence of particle shape and size distribution on aerosolisation of powders
Abstract
The dust released from granular materials in industries, so called aerosolisation, can have a negative impact in the workplace as well as the surrounding environment. The dustiness of a material is related to intrinsic properties of the powders including physicochemical properties such as particle size, size distribution, particle density, particle shape etc. It is also related to the type and magnitude of energy applied to the material during an application generating dust. Further, the local ambient conditions such as moisture content have also been found to affect dustiness. So in effect, a given amount of powder should release a specific amount or concentration of aerosol over a period of time if the same input energy is applied for the same ambient conditions. Thus a powders dust generation behavior can be studied on the basis of its intrinsic properties. A dustiness tester is a lab-scale tester which should ideally represent and mimic the actual industrial process which generates dust. In this research, we use the „Vortex Shaker Method‟ to test dust generation of two ceramic powders used extensively in research and industrial applications, namely silicon carbide (SiC) of 30-100μm in size and aluminum oxide (Al2O3) which size ranks from 0.5 to 100μm...