M. Karelson, V. S. Lobanov, and A. Katritzky, Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chemical Reviews, vol.96, issue.3, pp.1027-1044, 1996.
DOI : 10.1021/cr950202r

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 2000.
DOI : 10.1002/9783527613106

R. Benigni, C. Bossa, T. Netzeva, and A. Worth, Collection and Evaluation of (Q)SAR Models for Mutagenicity and Carcinogenicity, 2007.

S. P. Bradbury, Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research, Toxicology Letters, vol.79, issue.1-3, pp.229-237, 1995.
DOI : 10.1016/0378-4274(95)03374-T

M. Grover, B. Singh, M. Bakshi, and S. Singh, Quantitative structure???property relationships in pharmaceutical research ??? Part 2, Pharmaceutical Science & Technology Today, vol.3, issue.2, pp.50-57, 2000.
DOI : 10.1016/S1461-5347(99)00215-1

M. Grover, B. Singh, M. Bakshi, and S. Singh, Quantitative structure???property relationships in pharmaceutical research ??? Part 1, Pharmaceutical Science & Technology Today, vol.3, issue.1, pp.28-35, 2000.
DOI : 10.1016/S1461-5347(99)00214-X

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson et al., Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction, Chemical Reviews, vol.110, issue.10, pp.5714-5789, 2010.
DOI : 10.1021/cr900238d

J. C. Dearden, P. Rotureau, and G. Fayet, QSPR prediction of physico-chemical properties for REACH, SAR and QSAR in Environmental Research, vol.1, issue.4, pp.545-584, 2013.
DOI : 10.1016/j.chemosphere.2006.09.049

URL : https://hal.archives-ouvertes.fr/ineris-00971003

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, Quantitative Structure???Property Relationship Modeling of Diverse Materials Properties, Chemical Reviews, vol.112, issue.5, pp.2889-2919, 2012.
DOI : 10.1021/cr200066h

F. Gharagheizi, An accurate model for prediction of autoignition temperature of pure compounds, Journal of Hazardous Materials, vol.189, issue.1-2, pp.211-221, 2011.
DOI : 10.1016/j.jhazmat.2011.02.014

A. R. Katritzky, R. Petrukhin, R. Jain, and M. Karelson, QSPR Analysis of Flash Points, Journal of Chemical Information and Computer Sciences, vol.41, issue.6, pp.1521-1530, 2001.
DOI : 10.1021/ci010043e

G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms, Journal of Molecular Modeling, vol.112, issue.10
DOI : 10.1021/jp800043x

URL : https://hal.archives-ouvertes.fr/ineris-00961762

, J. Mol. Model, vol.17, pp.2443-2453, 2011.

Y. Lu, D. Ng, and M. S. Mannan, Prediction of the Reactivity Hazards for Organic Peroxides Using the QSPR Approach, Industrial & Engineering Chemistry Research, vol.50, issue.3, pp.1515-1522, 2011.
DOI : 10.1021/ie100833m

V. Prana, P. Rotureau, G. Fayet, D. André, S. Hub et al., Prediction of the thermal decomposition of organic peroxides by validated QSPR models, Journal of Hazardous Materials, vol.276, issue.14, pp.216-224, 2014.
DOI : 10.1016/j.jhazmat.2014.05.009

URL : https://hal.archives-ouvertes.fr/ineris-01862412

B. M. Rice and J. J. Hare, A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules, The Journal of Physical Chemistry A, vol.106, issue.9, pp.1770-1783, 2002.
DOI : 10.1021/jp012602q

M. H. Keshavarz, Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure, Journal of Hazardous Materials, vol.153, issue.1-2, pp.201-206, 2008.
DOI : 10.1016/j.jhazmat.2007.08.036

S. Bénazet, G. Jacob, and G. Pèpe, GenMolTM Supramolecular Descriptors Predicting Reliable Sensitivity of Energetic Compounds. Propel. Explos. Pyrotech, vol.34, pp.120-135, 2009.

G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, Predicting explosibility properties of chemicals from Quantitative Structure-Property Relationships. Process Saf, pp.359-371, 2010.
URL : https://hal.archives-ouvertes.fr/ineris-00970447

G. Fayet, P. Rotureau, V. Prana, and C. Adamo, Global and local quantitative structure?property relationship models to predict the impact sensitivity of nitro compounds. Process Saf, pp.291-303, 2012.
URL : https://hal.archives-ouvertes.fr/ineris-00961780

E. N. Muratov, E. V. Varlamova, A. G. Artemenko, P. G. Polishchuk, and V. Kuz-'min, Existing and Developing Approaches for QSAR Analysis of Mixtures, Molecular Informatics, vol.18, issue.3-4, pp.202-221, 2012.
DOI : 10.1080/10629360601033598

S. Ajmani, S. C. Rogers, M. H. Barley, and D. J. Livingstone, Application of QSPR to Mixtures, Journal of Chemical Information and Modeling, vol.46, issue.5, pp.2043-2055, 2006.
DOI : 10.1021/ci050559o

S. Ajmani, S. C. Rogers, M. H. Barley, A. N. Burgess, and D. J. Livingstone, Characterization of Mixtures. Part 2: QSPR Models for Prediction of Excess Molar Volume and Liquid Density Using Neural Networks, Molecular Informatics, vol.40, issue.8-9, pp.645-653, 2010.
DOI : 10.1021/ci980033m

S. Ajmani, S. C. Rogers, M. H. Barley, A. N. Burgess, and D. J. Livingstone, Characterization of Mixtures Part 1: Prediction of Infinite-Dilution Activity Coefficients Using Neural Network-Based QSPR Models, QSAR & Combinatorial Science, vol.43, issue.11-12, pp.1346-1361, 2008.
DOI : 10.1021/ci980033m

W. J. Lyman, W. F. Reehl, D. H. Rosenblatt, I. Oprisiu, E. Varlamova et al., Handbook of Chemical Property Estimation Methods, 1990.

A. Varnek, QSPR Approach to Predict Nonadditive Properties of Mixtures. Application to Bubble Point Temperatures of Binary Mixtures of Liquids, Mol. Inf, vol.31, pp.491-502, 2012.

A. R. Katritzky, I. B. Stoyanova-slavova, K. Tämm, T. Tamm, and M. Karelson, Application of the QSPR Approach to the Boiling Points of Azeotropes, The Journal of Physical Chemistry A, vol.115, issue.15, pp.3475-3479, 2011.
DOI : 10.1021/jp104287p

A. A. Oliferenko, P. V. Oliferenko, J. S. Torrecilla, and A. Katritzky, Boiling Points of Ternary Azeotropic Mixtures Modeled with the

, Ind. Eng. Chem. Res, vol.51, pp.9123-9128, 2012.

V. P. Solov-'ev, I. Oprisiu, G. Marcou, and A. Varnek, Quantitative Structure-Property Relationship (QSPR) Modeling of Normal Boiling Point Temperature and Composition of Binary Azeotropes

, Eng. Chem. Res, vol.50, pp.14162-14167, 2011.

I. Oprisiu, S. Novotarskyi, I. Tetko, . St-/-sg-/-ac, and . A10, Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM) J. Chemometr. 2013, 5, 4. (30) Babrauskas, V. Ignition Handbook. Fire Sciences Publishers: 2003. (31) Globally harmonized system of classification and labelling of chemicals (GHS) on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67 A review of estimation methods for flash points and flammability limits Process Saf, ) Regulation (EC) N°1272/2008 of the European Parliament and of the Council of 16EC, and amending Regulation (EC) N° 1907, pp.47-55, 1999.

X. Liu and Z. Liu, Research Progress on Flash Point Prediction, Journal of Chemical & Engineering Data, vol.55, issue.9, pp.2943-2950, 2010.
DOI : 10.1021/je1003143

, Correlation of closed-cup flash points with normal boiling points for silicone and general organic compounds, Fire Mater, vol.21, pp.277-282, 1997.

L. Catoire and V. Naudet, A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values, Journal of Physical and Chemical Reference Data, vol.33, issue.4, pp.1083-4796, 2004.
DOI : 10.1063/1.1835321

D. A. Saldana, L. Starck, P. Mougin, B. Rousseau, L. Pidol et al., Flash Point and Cetane Number Predictions for Fuel Compounds Using Quantitative Structure Property Relationship (QSPR) Methods. Energy Fuels, pp.3900-3908, 2011.

J. R. Rowley, R. L. Rowley, and W. Wilding, Estimation of the Flash Point of Pure Organic Chemicals from Structural Contributions. Process Saf, pp.353-358, 2010.

G. Fayet, P. Rotureau, V. Prana, and C. Adamo, Prediction of Physico-Chemical Properties for REACH Based on QSPR Models, Chem. Eng. Trans, p.31, 2013.
URL : https://hal.archives-ouvertes.fr/ineris-00976244

A. Khajeh and H. Modarress, QSPR prediction of flash point of esters by means of GFA and ANFIS, Journal of Hazardous Materials, vol.179, issue.1-3, pp.715-720, 2010.
DOI : 10.1016/j.jhazmat.2010.03.060

R. O. Wickey and D. H. Chittenden, Flash Point of Blends Correlated, Pretroleum Refiner, vol.42, pp.157-158, 1963.

W. A. Affens and G. W. Mclaren, Flammability properties of hydrocarbon solutions in air, Journal of Chemical & Engineering Data, vol.17, issue.4, pp.482-488, 1972.
DOI : 10.1021/je60055a040

J. G. Walsham and R. Tess, Prediction of Flash Points for Solvent Mixtures In In Solvents Theory and Practice, Advances in Chemistry, pp.56-69, 1973.

P. F. Thorne, Flash Points of Mixtures of Flammable and Non-Flammable Liquids; 1022; Fire Research Station: Fire Research Station BOREHAMWOOD Hertfordshire WD6 2BL, Gmehling, J.; Rassmussen, issue.46, 1975.

, Chem. Fundam, vol.21, pp.186-188, 1982.

D. T. Wu and R. Finkelman, A mathematical model for the prediction of closed cup flash points, Org. Coat. Plast. Chem, vol.38, pp.61-67, 1978.

H. Liaw, W. Lu, V. Gerbaud, and C. Chen, Flash-point prediction for binary partially miscible mixtures of flammable solvents, Journal of Hazardous Materials, vol.153, issue.3, pp.1165-1175, 2008.
DOI : 10.1016/j.jhazmat.2007.09.078

URL : https://hal.archives-ouvertes.fr/hal-00467108

H. Liaw, V. Gerbaud, and Y. Li, Prediction of miscible mixtures flash-point from UNIFAC group contribution methods, Fluid Phase Equilibria, vol.300, issue.1-2, pp.70-82, 2011.
DOI : 10.1016/j.fluid.2010.10.007

H. Liaw and S. Lin, Binary mixtures exhibiting maximum flash-point behavior, Journal of Hazardous Materials, vol.140, issue.1-2, pp.155-164, 2007.
DOI : 10.1016/j.jhazmat.2006.06.050

D. A. Saldana, L. Starck, P. Mougin, B. Rousseau, and B. Creton, Prediction of Flash Points for Fuel Mixtures Using Machine Learning and a Novel Equation, Energy & Fuels, vol.27, issue.7, pp.3811-3820, 2013.
DOI : 10.1021/ef4005362

T. Gaudin, P. Rotureau, G. Fayet, H. Liaw, V. Gerbaud et al., Combining mixing rules with QSPR models for pure chemicals to predict the flash points of binary organic liquid mixtures, Fire Safety Journal, vol.74, issue.55, pp.61-70, 2006.
DOI : 10.1016/j.firesaf.2015.04.006

URL : https://hal.archives-ouvertes.fr/ineris-01862519

H. Liaw, V. Gerbaud, and C. Chao-yang, Flash Point for Ternary Partially Miscible Mixtures of Flammable Solvents, Journal of Chemical & Engineering Data, vol.55, issue.1, pp.134-146, 2010.
DOI : 10.1021/je900287r

M. Mitu, E. Brandes, and P. Dieter, Lower Explosion Limits, Lower Explosion Points and Flash Points of (1-octanol + n-amylacetate) Mixtures, Revista de Chimie, vol.57, pp.770-772, 2006.

M. Noorollahy, A. Z. Moghadam, and A. A. Ghasrodashti, Calculation of mixture equilibrium binary interaction parameters using closed cup flash point measurements, Chemical Engineering Research and Design, vol.88, issue.1, pp.81-86, 2010.
DOI : 10.1016/j.cherd.2009.07.002

D. Ha and S. Lee, Prediction and measurement of the lower flash points for flammable binary solutions by using a setaflash closed cup tester, Korean Journal of Chemical Engineering, vol.20, issue.5, pp.1161-1165, 2011.
DOI : 10.1007/BF02697279

A. Z. Moghaddam, A. Rafiei, and T. Khalili, Assessing prediction models on calculating the flash point of organic acid, ketone and alcohol mixtures, Fluid Phase Equilibria, vol.316, pp.117-121, 2012.
DOI : 10.1016/j.fluid.2011.12.014

A. B. Donaldson, Flash Point For Binary Mixtures, Eng. J. Qatar Univ, vol.7, pp.27-36, 1994.

M. Hristova, Measurement and prediction of binary mixture flash point, Central European Journal of Chemistry, vol.34, issue.2, pp.57-62, 2013.
DOI : 10.1016/S0021-9614(02)00227-6

M. Hristova and D. Damgaliev, Abstract, Open Chemistry, vol.21, issue.3, pp.388-393, 2013.
DOI : 10.1002/aic.690210115

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., J. R

G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji et al., J. E.; Ogliaro, F

R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant et al., J. B

R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi et al., C.; Ochterski, J. W

R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador et al., , 2009.

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.460205

J. Tirado-rives and W. L. Jorgensen, Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules, Journal of Chemical Theory and Computation, vol.4, issue.2, pp.297-306, 2008.
DOI : 10.1021/ct700248k

J. D. Crounse, L. B. Nielsen, S. Jörgensen, H. G. Kjaergaard, and P. Wennberg, Autoxidation of Organic Compounds in the Atmosphere, The Journal of Physical Chemistry Letters, vol.4, issue.20, pp.3513-3520, 2013.
DOI : 10.1021/jz4019207

D. Tommaso, S. Rotureau, P. Benaissa, W. Gruez, P. Adamo et al., Theoretical and Experimental Study on the Inhibition of Diethyl Ether Oxidation, 69) CodessaPro70) Karelson, M. Molecular Descriptors in QSAR/QSPR Langenaeker, W. Conceptual Density Functional Theory, pp.2821-2829, 2000.
DOI : 10.1021/ef402508s

URL : https://hal.archives-ouvertes.fr/ineris-01710187

H. Chermette, Chemical reactivity indexes in density functional theory, Journal of Computational Chemistry, vol.120, issue.1, pp.129-154, 1999.
DOI : 10.1103/PhysRevB.56.16029

URL : https://hal.archives-ouvertes.fr/hal-00006867

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility, Chemical Physics Letters, vol.467, issue.4-6, pp.407-411, 2009.
DOI : 10.1016/j.cplett.2008.11.033

URL : https://hal.archives-ouvertes.fr/ineris-00963161

G. Fayet, P. Rotureau, L. Joubert, C. Adamo, and W. Kay, On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations, Journal of Hazardous Materials, vol.171, issue.1-3, pp.845-850, 1936.
DOI : 10.1016/j.jhazmat.2009.06.088

URL : https://hal.archives-ouvertes.fr/ineris-00961948

J. Jover, R. Bosque, and J. Sales, Neural Network Based QSPR Study for Predicting pKa of Phenols in Different Solvents (77) Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation, J. Comb. Sci. Mol. Inform, vol.29, pp.385-397, 2007.

E. N. Muratov, E. V. Varlamova, A. G. Artamenko, P. G. Polishchuk, and V. Kuz-'min, Existing and Developing Approaches for QSAR Analysis of Mixtures, Molecular Informatics, vol.18, issue.3-4, pp.202-221, 2012.
DOI : 10.1080/10629360601033598

I. Oprisiu, Modélisation QSPR de mélanges binaires non-additifs, 2012.

S. Ajmani, S. C. Rogers, M. H. Barley, and D. J. Livingstone, Application of QSPR to Mixtures, Journal of Chemical Information and Modeling, vol.46, issue.5, pp.2043-2055, 2006.
DOI : 10.1021/ci050559o

F. Gharagheizi, A. Eslamimanesh, A. H. Mohammadi, and D. Richon, Empirical Method for Representing the Flash-Point Temperature of Pure Compounds, Industrial & Engineering Chemistry Research, vol.50, issue.9, pp.5877-5880, 2011.
DOI : 10.1021/ie102246v

URL : https://hal.archives-ouvertes.fr/hal-00595561

M. Randic, The connectivity index 25 years after, Journal of Molecular Graphics and Modelling, vol.20, issue.1, pp.19-35, 2001.
DOI : 10.1016/S1093-3263(01)00098-5