M. Gwinn and V. Vallyathan, Nanoparticles: Health Effects-Pros and Cons, Environmental Health Perspectives, vol.114, pp.1818-1825, 2006.
DOI : 10.1289/ehp.8871

URL : https://ehp.niehs.nih.gov/doi/pdf/10.1289/ehp.8871

, Nanotechnologies?Terminology and definitions for nano-objects?Nanoparticle, nanofibre and nanoplate, ISO, 2008.

T. Tetley, Health effects of nanomaterials: Figure 1, Biochemical Society Transactions, vol.35, issue.3, pp.527-531, 2007.
DOI : 10.1042/BST0350527

G. Oberdorster, E. Oberdorster, and J. Oberdorster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environmental Health Perspectives, vol.113, issue.7, pp.823-839, 2005.
DOI : 10.1289/ehp.7339

F. Zhao, Y. Zhao, Y. Liu, X. Chang, C. Chen et al., Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials, Small, vol.36, issue.10, pp.1322-1337, 2011.
DOI : 10.1016/j.ejps.2008.11.013

M. Zhu, W. Feng, Y. Wang, B. Wang, M. Wang et al., Particokinetics and Extrapulmonary Translocation of Intratracheally Instilled Ferric Oxide Nanoparticles in Rats and the Potential Health Risk Assessment, Toxicological Sciences, vol.247, issue.2, pp.342-351, 2009.
DOI : 10.1016/j.tox.2008.02.011

M. Geiser and W. Kreyling, Deposition and biokinetics of inhaled nanoparticles, Particle and Fibre Toxicology, vol.7, issue.1, p.20205860, 2010.
DOI : 10.1186/1743-8977-7-2

S. Klein, J. Hennen, T. Serchi, B. Blomeke, and A. Gutleb, Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung, Toxicology in Vitro, vol.25, issue.8, pp.1516-1534, 2011.
DOI : 10.1016/j.tiv.2011.09.006

D. Warheit, K. Reed, and C. Sayes, A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management, Inhalation Toxicology, vol.171, issue.sup1, pp.61-67, 2009.
DOI : 10.1016/j.toxlet.2007.04.008

A. Mukhopadhyay, C. Grabinski, A. Afrooz, N. Saleh, and S. Hussain, Effect of Gold Nanosphere Surface Chemistry on Protein Adsorption and Cell Uptake In Vitro, Applied Biochemistry and Biotechnology, vol.463, issue.196, pp.327-337, 2012.
DOI : 10.1016/j.cplett.2008.08.039

O. Lunov, T. Syrovets, C. Loos, J. Beil, M. Delacher et al., Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line, ACS Nano, vol.5, issue.3, pp.1657-1669, 2011.
DOI : 10.1021/nn2000756

E. Frohlich, C. Samberger, T. Kueznik, M. Absenger, E. Roblegg et al., Cytotoxicity of nanoparticles independent from oxidative stress, The Journal of Toxicological Sciences, vol.34, issue.4, pp.363-375, 2009.
DOI : 10.2131/jts.34.363

A. Nel, T. Xia, L. Madler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, issue.5761, pp.622-627, 2006.
DOI : 10.1126/science.1114397

R. Shukla, V. Sharma, A. Pandey, S. Singh, S. Sultana et al., ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells, Toxicology in Vitro, vol.25, issue.1, pp.231-241, 2011.
DOI : 10.1016/j.tiv.2010.11.008

A. Thubagere and R. Bm, Model, ACS Nano, vol.4, issue.7, pp.3611-3622, 2010.
DOI : 10.1021/nn100389a

H. Karlsson, The comet assay in nanotoxicology research, Analytical and Bioanalytical Chemistry, vol.640, issue.1???2, pp.651-666, 2010.
DOI : 10.1016/j.mrfmmm.2007.12.010

N. Singh, B. Manshian, G. Jenkins, S. Griffiths, P. Williams et al., NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials, Biomaterials, vol.30, issue.23-24, pp.3891-3914, 2009.
DOI : 10.1016/j.biomaterials.2009.04.009

M. Ahamed, M. Karns, M. Goodson, R. J. Hussain, S. Schlager et al., DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells, Toxicology and Applied Pharmacology, vol.233, issue.3, pp.404-410, 2008.
DOI : 10.1016/j.taap.2008.09.015

D. Lewis, C. Bruce, S. Bohic, P. Cloetens, S. Hammond et al., Intracellular synchrotron nanoimaging and DNA damage/genotoxicity screening of novel lanthanide-coated nanovectors, Nanomedicine, vol.90, issue.10, pp.1547-1557, 2010.
DOI : 10.1063/1.2719653

URL : https://hal.archives-ouvertes.fr/inserm-00589259

H. Xie, M. Mason, J. Wise, and . Sr, Genotoxicity of metal nanoparticles, Reviews on Environmental Health, vol.6, issue.4, pp.251-268, 2010.
DOI : 10.1302/0301-620X.83B7.10102

L. Mah, A. El-osta, and T. Karagiannis, ??H2AX: a sensitive molecular marker of DNA damage and repair, Leukemia, vol.678, issue.4, pp.679-686, 2010.
DOI : 10.1002/cyto.a.20426

J. Matthews, T. Green, M. Stone, B. Wroblewski, J. Fisher et al., Comparison of the response of three human monocytic cell lines to challenge with polyethylene particles of known size and dose, Journal of Materials Science: Materials in Medicine, vol.12, issue.3, pp.249-258, 2001.
DOI : 10.1023/A:1008967200706

R. Wottrich, S. Diabate, and H. Krug, Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture, International Journal of Hygiene and Environmental Health, vol.207, issue.4, pp.353-361, 2004.
DOI : 10.1078/1438-4639-00300

S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-marechal et al., Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines, Particle and Fibre Toxicology, vol.6, issue.1, pp.14-24, 2009.
DOI : 10.1186/1743-8977-6-14

URL : https://hal.archives-ouvertes.fr/inserm-00407214

J. Geys, L. Coenegrachts, J. Vercammen, Y. Engelborghs, A. Nemmar et al., In vitro study of the pulmonary translocation of nanoparticlesA preliminary study, Toxicology Letters, vol.160, issue.3, pp.218-226, 2006.
DOI : 10.1016/j.toxlet.2005.07.005

J. Geys, B. Nemery, and P. Hoet, Optimisation of culture conditions to develop an in vitro pulmonary permeability model, Toxicology in Vitro, vol.21, issue.7, pp.1215-1219, 2007.
DOI : 10.1016/j.tiv.2007.05.012

A. Lehmann, N. Daum, M. Bur, C. Lehr, P. Gehr et al., An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier, European Journal of Pharmaceutics and Biopharmaceutics, vol.77, issue.3, pp.398-406, 2011.
DOI : 10.1016/j.ejpb.2010.10.014

A. Stentebjerg-andersen, I. Notlevsen, B. Brodin, and C. Nielsen, Calu-3 cells grown under AIC and LCC conditions: Implications for dipeptide uptake and transepithelial transport of substances, European Journal of Pharmaceutics and Biopharmaceutics, vol.78, issue.1, pp.19-26, 2011.
DOI : 10.1016/j.ejpb.2010.12.030

H. Paur, F. Cassee, J. Teeguardenc, H. Fissand, S. Diabatee et al., In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung???A dialog between aerosol science and biology, Journal of Aerosol Science, vol.42, issue.10, pp.668-692, 2011.
DOI : 10.1016/j.jaerosci.2011.06.005

H. Kamencic, A. Lyon, P. Paterson, and B. Juurlink, Monochlorobimane Fluorometric Method to Measure Tissue Glutathione, Analytical Biochemistry, vol.286, issue.1, pp.35-37, 2000.
DOI : 10.1006/abio.2000.4765

C. Redon, A. Nakamura, O. Martin, P. Parekh, U. Weyemi et al., Recent developments in the use of ?? -H2AX as a quantitative DNA double-strand break biomarker, Aging, vol.3, issue.2, pp.168-174, 2011.
DOI : 10.18632/aging.100284

M. Tsamou, D. Jennen, S. Claessen, C. Magkoufopoulou, J. Kleinjans et al., Performance of in vitro ??H2AX assay in HepG2 cells to predict in vivo genotoxicity, Mutagenesis, vol.31, issue.6, pp.645-652, 2012.
DOI : 10.1016/j.mam.2010.02.003

P. Ruenraroengsak, P. Novak, D. Berhanu, A. Thorley, E. Valsami-jones et al., Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles, Nanotoxicology, vol.42, issue.5, pp.94-108, 2012.
DOI : 10.1165/rcmb.2009-0138OC

X. Wang, Y. Yang, R. Li, C. Mcguinnes, J. Adamson et al., toxicity data for nanoparticles, Nanotoxicology, vol.7, issue.6, pp.465-476, 2014.
DOI : 10.1038/nmat2202

S. Dekali, A. Divetain, T. Kortulewski, J. Vanbaelinghem, C. Gamez et al., receptor in pulmonary inflammation induced by nanoparticles, Nanotoxicology, vol.77, issue.7, pp.1302-1314, 2013.
DOI : 10.1002/cyto.a.20927

URL : https://hal.archives-ouvertes.fr/ineris-00963497

A. Holder, R. Goth-goldstein, D. Lucas, and C. Koshland, Particle-Induced Artifacts in the MTT and LDH Viability Assays, Chemical Research in Toxicology, vol.25, issue.9, pp.1885-1892, 2010.
DOI : 10.1021/tx3001708

A. Kroll, M. Pillukat, D. Hahn, and J. Schnekenburger, Interference of engineered nanoparticles with in vitro toxicity assays, Archives of Toxicology, vol.25, issue.Suppl 1, pp.1123-1136, 2012.
DOI : 10.1016/j.dental.2009.03.012

V. Stone, H. Johnston, and R. Schins, systems for nanotoxicology: methodological considerations, Critical Reviews in Toxicology, vol.105, issue.1, pp.613-626, 2009.
DOI : 10.1073/pnas.0805411105

M. Zaqout, T. Sumizawa, H. Igisu, D. Wilson, T. Myojo et al., Binding of titanium dioxide nanoparticles to lactate dehydrogenase, Environmental Health and Preventive Medicine, vol.60, issue.4, pp.341-345, 2012.
DOI : 10.1021/ja01269a023

K. Ong, T. Maccormack, R. Clark, J. Ede, V. Ortega et al., Widespread nanoparticleassay interference: implications for nanotoxicity testing, PLoS One, vol.9, p.24618833, 2014.

K. Kawata, M. Osawa, and S. Okabe, In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic Doses to HepG2 Human Hepatoma Cells, Environmental Science & Technology, vol.43, issue.15, pp.6046-6051, 2009.
DOI : 10.1021/es900754q

E. Frohlich, G. Bonstingl, A. Hofler, C. Meindl, G. Leitinger et al., Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols, Toxicology in Vitro, vol.27, issue.1, pp.409-417, 2012.
DOI : 10.1016/j.tiv.2012.08.008

E. Frohlich, C. Meindl, E. Roblegg, A. Griesbacher, and T. Pieber, Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing, Nanotoxicology, vol.4, issue.4, pp.424-439, 2012.
DOI : 10.1080/10915810701225133

J. Kim, C. Aberg, G. De-carcer, M. Malumbres, A. Salvati et al., Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest, ACS Nano, vol.7, issue.9, pp.7483-7494, 2013.
DOI : 10.1021/nn403126e

F. Wang, M. Bexiga, S. Anguissola, P. Boya, J. Simpson et al., Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles, Nanoscale, vol.7, issue.22, pp.10868-10876, 2013.
DOI : 10.1039/C0MB00109K

S. Anguissola, D. Garry, A. Salvati, O. Brien, P. Dawson et al., High Content Analysis Provides Mechanistic Insights on the Pathways of Toxicity Induced by Amine-Modified Polystyrene Nanoparticles, PLoS ONE, vol.14, issue.(4), p.25238162, 2014.
DOI : 10.1371/journal.pone.0108025.s001

T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf et al., Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm, Nano Letters, vol.6, issue.8, pp.1794-1807, 2006.
DOI : 10.1021/nl061025k

S. Bhattacharjee, L. De-haan, N. Evers, X. Jiang, A. Marcelis et al., Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells, Particle and Fibre Toxicology, vol.7, issue.1, p.20831820, 2010.
DOI : 10.1186/1743-8977-7-25

G. Bhabra, A. Sood, B. Fisher, L. Cartwright, M. Saunders et al., Nanoparticles can cause DNA damage across a cellular barrier, Nature Nanotechnology, vol.83, issue.12, pp.876-883, 2009.
DOI : 10.1016/j.mrfmmm.2005.10.011

J. Mccarthy, X. Gong, D. Nahirney, M. Duszyk, and M. Radomski, Polystyrene nanoparticles activate ion transport in human airway epithelial cells, International Journal of Nanomedicine, vol.6, pp.1343-1356, 2011.
DOI : 10.2147/IJN.S21145

O. Lunov, T. Syrovets, C. Loos, G. Nienhaus, V. Mailander et al., Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages, ACS Nano, vol.5, issue.12, pp.9648-9657, 2011.
DOI : 10.1021/nn203596e

R. Zucker, E. Massaro, K. Sanders, L. Degn, and W. Boyes, Detection of TiO2 nanoparticles in cells by flow cytometry, Cytometry A, vol.77, pp.677-685, 2010.

E. Park, J. Yi, K. Chung, D. Ryu, J. Choi et al., Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells, Toxicology Letters, vol.180, issue.3, pp.222-229, 2008.
DOI : 10.1016/j.toxlet.2008.06.869

K. Donaldson, C. Poland, and R. Schins, Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies, Nanotoxicology, vol.6, issue.1, pp.414-420, 2010.
DOI : 10.1186/1743-8977-6-3

K. Donaldson and C. Poland, Inhaled nanoparticles and lung cancer - what we can learn from conventional particle toxicology, Swiss Medical Weekly, vol.142, p.22714122, 2012.
DOI : 10.4414/smw.2012.13547

O. 'brien, J. Wilson, I. Orton, T. Pognan, and F. , Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, European Journal of Biochemistry, vol.107, issue.17, pp.5421-5426, 2000.
DOI : 10.1016/0009-8981(80)90442-8

S. Perrot, H. Dutertre-catella, C. Martin, P. Rat, and J. Warnet, Resazurin Metabolism Assay Is a New Sensitive Alternative Test in Isolated Pig Cornea, Toxicological Sciences, vol.72, issue.1, pp.122-129, 2003.
DOI : 10.1093/toxsci/kfg014

S. Perrot, H. Dutertre-catella, C. Martin, J. Warnet, and P. Rat, A new nondestructive cytometric assay based on resazurin metabolism and an organ culture model for the assessment of corneal viability, Cytometry, vol.86, issue.1, pp.7-14, 2003.
DOI : 10.1136/bjo.86.9.1068

V. Paget, J. Sergent, R. Grall, S. Altmeyer-morel, H. Girard et al., Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines, Nanotoxicology, vol.906, issue.sup1, pp.46-56, 2014.
DOI : 10.1002/cyto.a.20927

URL : https://hal.archives-ouvertes.fr/hal-01862308

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

A. Carpenter, T. Jones, M. Lamprecht, C. Clarke, I. Kang et al., CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biology, vol.7, issue.10, pp.100-17076895, 2006.
DOI : 10.1186/gb-2006-7-10-r100

R. Osseni, C. Debbasch, M. Christen, P. Rat, and J. Warnet, Tacrine-induced Reactive Oxygen Species in a Human Liver Cell Line: The Role of Anethole Dithiolethione as a Scavenger, Toxicology in Vitro, vol.13, issue.4-5, pp.683-688, 1999.
DOI : 10.1016/S0887-2333(99)00050-8

C. Debbasch, P. Pisella, D. Saint-jean, M. Rat, P. Warnet et al., Mitochondrial activity and glutathione injury in apoptosis induced by unpreserved and preserved beta-blockers on Chang conjunctival cells, Invest Ophthalmol Vis Sci, vol.42, pp.2525-2533, 2001.

R. Team, R: A language and environment for statistical computing, 2005.