A. Anadon, M. R. Martinezlarranaga, M. J. Diaz, and P. Bringas, Toxicokinetics of permethrin in the rat, Toxicology and Applied Pharmacology, vol.110, issue.1, pp.1-8, 1991.
DOI : 10.1016/0041-008X(91)90284-L

D. B. Barr, S. E. Baker, R. D. Whitehead, L. Wong, and L. L. Needham, Urinary Concentrations of Pyrethroid Metabolites in the General US Population, Epidemiology, vol.19, pp.192-193, 1999.

S. L. Beal, Ways to fit a PK model with some data below the quantification limit, Journal of Pharmacokinetics and Pharmacodynamics, vol.28, issue.5, pp.481-504, 2001.
DOI : 10.1023/A:1012299115260

F. Y. Bois and D. R. Mazle, : A Monte Carlo Simulation Program, Journal of Statistical Software, vol.2, issue.9, 1997.
DOI : 10.18637/jss.v002.i09

S. M. Bradberry, S. A. Cage, A. T. Proudfoot, and J. A. Vale, Poisoning due to Pyrethroids, Toxicological Reviews, vol.16, issue.2, pp.93-106, 2005.
DOI : 10.1584/jpestics.11.9

C. Brochot and F. Y. Bois, Use of a Chemical Probe to Increase Safety for Human Volunteers in Toxicokinetic Studies, Risk Analysis, vol.120, issue.1-3, pp.1559-1571, 2005.
DOI : 10.1146/annurev.pa.32.040192.001153

URL : https://hal.archives-ouvertes.fr/ineris-00962971

C. Brochot, T. J. Smith, and F. Y. Bois, Development of a physiologically based toxicokinetic model for butadiene and four major metabolites in humans: Global sensitivity analysis for experimental design issues, Chemico-Biological Interactions, vol.167, issue.3, pp.168-183, 2007.
DOI : 10.1016/j.cbi.2007.02.010

R. P. Brown, M. D. Delp, S. L. Lindstedt, L. R. Rhomberg, and R. P. Beliles, Physiological Parameter Values for Physiologically Based Pharmacokinetic Models, Toxicology and Industrial Health, vol.191, issue.231, pp.407-484, 1997.
DOI : 10.1007/BF00184496

H. J. Clewell, Y. M. Tan, J. L. Campbell, and M. E. Andersen, Quantitative Interpretation of Human Biomonitoring Data, Toxicology and Applied Pharmacology, vol.231, issue.1, pp.122-133, 2008.
DOI : 10.1016/j.taap.2008.04.021

J. Cote, Y. Bonvalot, G. Carrier, C. Lapointe, U. Fuhr et al., A Novel Toxicokinetic Modeling of Cypermethrin and Permethrin and Their Metabolites in Humans for Dose Reconstruction from Biomarker Data, PLoS ONE, vol.62, issue.2, p.88517, 2014.
DOI : 10.1371/journal.pone.0088517.s002

J. A. Crow, A. Borazjani, P. M. Potter, and M. K. Ross, Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases, Toxicology and Applied Pharmacology, vol.221, issue.1, pp.1-12, 2007.
DOI : 10.1016/j.taap.2007.03.002

J. Davis, R. Tornero-velez, and R. W. Setzer, Computational Approaches for Developing Informative Prior Distributions for Bayesian Calibration of PBPK Models, Parameters for Pesticide QSAR and PBPK/PD Models for Human Risk Assessment, 2012.
DOI : 10.1021/bk-2012-1099.ch018

E. Egerer, B. Rossbach, A. Muttray, M. Schneider, and S. Letzel, Biomonitoring of pyrethroid metabolites in environmental medicine, 2004.

S. A. Flannigan, S. B. Tucker, M. M. Key, C. E. Ross, E. J. Fairchild et al., Synthetic pyrethroid insecticides: a dermatological evaluation., Occupational and Environmental Medicine, vol.42, issue.6, pp.363-372, 1985.
DOI : 10.1136/oem.42.6.363

URL : http://oem.bmj.com/content/42/6/363.full.pdf

L. C. Gaughan, T. Unai, and J. E. Casida, Permethrin metabolism in rats, Journal of Agricultural and Food Chemistry, vol.25, issue.1, pp.9-17, 1977.
DOI : 10.1021/jf60209a005

A. Gelman, X. L. Meng, and H. Stern, Posterior predictive assessment of model fitness via realized discrepancies, Stat Sinica, vol.6, pp.733-760, 1996.

S. J. Godin, M. J. Devito, M. F. Hughes, D. G. Ross, E. J. Scollon et al., Physiologically Based Pharmacokinetic Modeling of Deltamethrin: Development of a Rat and Human Diffusion-Limited Model, Toxicological Sciences, vol.48, issue.2, pp.330-343, 2010.
DOI : 10.1016/j.ntt.2007.01.007

Y. Gotoh, M. Kawakami, N. Matsumoto, and Y. Okada, Permethrin Emulsion Ingestion, Journal of Toxicology: Clinical Toxicology, vol.4, issue.1-2, pp.57-61, 1998.
DOI : 10.1021/jf60204a007

F. S. He, S. G. Wang, L. H. Liu, S. Y. Chen, Z. W. Zhang et al., Clinical manifestations and diagnosis of acute pyrethroid poisoning, Archives of Toxicology, vol.2, issue.3, pp.54-58, 1989.
DOI : 10.1007/BF00334635

U. Heudorf, W. Butte, C. Schulz, and J. Angerer, Reference values for metabolites of pyrethroid and organophosphorous insecticides in urine for human biomonitoring in environmental medicine, International Journal of Hygiene and Environmental Health, vol.209, issue.3, pp.293-299, 2006.
DOI : 10.1016/j.ijheh.2006.01.001

J. B. Houston, Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance, Biochemical Pharmacology, vol.47, issue.9, pp.1469-1479, 1994.
DOI : 10.1016/0006-2952(94)90520-7

D. Huizer, A. M. Ragas, R. Oldenkamp, J. G. Van-rooij, and M. A. Huijbregts, Uncertainty and variability in the exposure reconstruction of chemical incidents ??? the case of acrylonitrile, Toxicology Letters, vol.231, issue.3, pp.337-343, 2014.
DOI : 10.1016/j.toxlet.2014.07.019

K. Imai, J. Yoshinaga, M. Yoshikane, H. Shiraishi, M. N. Mieno et al., Pyrethroid insecticide exposure and semen quality of young Japanese men, Reproductive Toxicology, vol.43, pp.38-44, 2014.
DOI : 10.1016/j.reprotox.2013.10.010

, Exposition de la population française aux substances chimiques de l'environnement. Tome 2 : Polychlorobiphényles et Pesticides, InVS, p.178, 2013.

Y. X. Jin, J. W. Liu, L. G. Wang, R. J. Chen, C. Zhou et al., Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice, Environment International, vol.42, pp.144-151, 2012.
DOI : 10.1016/j.envint.2011.05.020

K. H. Kühn, G. Leng, K. A. Bucholski, L. Dunemann, and H. Idel, Determination of pyrethroid metabolites in human urine by capillary gas chromatography-mass spectrometry, Chromatographia, vol.33, issue.5-6, pp.285-292, 1996.
DOI : 10.1007/BF02270996

L. J. Lawrence and J. E. Casida, Pyrethroid toxicology: Mouse intracerebral structure-toxicity relationships, Pesticide Biochemistry and Physiology, vol.18, issue.1, pp.9-14, 1982.
DOI : 10.1016/0048-3575(82)90082-7

L. Grand, R. Dulaurent, S. Gaulier, J. M. Saint-marcoux, F. Moesch et al., Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography???tandem mass spectrometry: Application to 39 persons without known exposure to pyrethroids, Toxicology Letters, vol.210, issue.2, pp.248-253, 2012.
DOI : 10.1016/j.toxlet.2011.08.016

URL : https://hal.archives-ouvertes.fr/inserm-00926148

G. Leng and W. Gries, Simultaneous determination of pyrethroid and pyrethrin metabolites in human urine by gas chromatography???high resolution mass spectrometry, Journal of Chromatography B, vol.814, issue.2, pp.285-294, 2005.
DOI : 10.1016/j.jchromb.2004.10.044

P. M. Lequesne, I. C. Maxwell, and S. T. Butterworth, Transient Facial Sensory Symptoms Following Exposure to Synthetic Pyrethroids -a Clinical and Electro-Physiological Assessment, Neurotoxicology, vol.2, pp.1-11, 1981.

F. Lestremau, M. Willemin, C. Chatellier, S. Desmots, and C. Brochot, Determination of cis-permethrin, trans-permethrin and associated metabolites in rat blood and organs by gas chromatography???ion trap mass spectrometry, Analytical and Bioanalytical Chemistry, vol.397, issue.6, pp.3477-3487, 2014.
DOI : 10.1007/s00216-010-3786-5

URL : https://hal.archives-ouvertes.fr/ineris-01710209

M. Martignoni, G. Groothuis, and R. De-kanter, Comparison of mouse and rat cytochrome P450- mediated metabolism in liver and intestine. Drug metabolism and disposition: the biological fate of chemicals 34, pp.1047-1054, 2006.

J. D. Meeker, D. B. Barr, and R. Hauser, Human semen quality and sperm DNA damage in relation to urinary metabolites of pyrethroid insecticides, Human Reproduction, vol.148, issue.8, 1932.
DOI : 10.1210/en.2006-1497

K. Mikata, N. Isobe, and H. Kaneko, Biotransformation and Enzymatic Reactions of Synthetic Pyrethroids in Mammals, Top curr chem, vol.314, pp.113-135, 2012.
DOI : 10.1007/128_2011_254

A. Mirfazaelian, K. B. Kim, S. S. Anand, H. J. Kim, R. Tornero-velez et al., Development of a Physiologically Based Pharmacokinetic Model for Deltamethrin in the Adult Male Sprague-Dawley Rat, Toxicological Sciences, vol.93, issue.2, pp.432-442, 2006.
DOI : 10.1006/taap.2002.9432

M. K. Morgan, Children???s Exposures to Pyrethroid Insecticides at Home: A Review of Data Collected in Published Exposure Measurement Studies Conducted in the United States, International Journal of Environmental Research and Public Health, vol.46, issue.8, pp.2964-2985, 2012.
DOI : 10.1021/es2044882

Y. Nakamura, K. Sugihara, T. Sone, M. Isobe, S. Ohta et al., The in vitro metabolism of a pyrethroid insecticide, permethrin, and its hydrolysis products in rats, Toxicology, vol.235, issue.3, pp.176-184, 2007.
DOI : 10.1016/j.tox.2007.03.016

M. K. Ross, A. Borazjani, C. C. Edwards, and P. M. Potter, Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases, Biochemical Pharmacology, vol.71, issue.5, pp.657-669, 2006.
DOI : 10.1016/j.bcp.2005.11.020

D. J. Schoeffner, D. A. Warren, S. Muralidara, J. V. Bruckner, and J. E. Simmons, ORGAN WEIGHTS AND FAT VOLUME IN RATS AS A FUNCTION OF STRAIN AND AGE, Journal of Toxicology and Environmental Health, Part A, vol.56, issue.7, pp.449-462, 1999.
DOI : 10.1080/009841099157917

E. J. Scollon, J. M. Starr, S. J. Godin, M. J. Devito, and M. F. Hughes, In Vitro Metabolism of Pyrethroid Pesticides by Rat and Human Hepatic Microsomes and Cytochrome P450 Isoforms, Drug Metabolism and Disposition, vol.37, issue.1, pp.221-228, 2009.
DOI : 10.1124/dmd.108.022343

D. M. Soderlund, Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances, Archives of Toxicology, vol.41, issue.2, pp.165-181, 2012.
DOI : 10.1016/S0896-6273(04)00116-3

D. M. Soderlund, J. M. Clark, L. P. Sheets, L. S. Mullin, V. J. Piccirillo et al., Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment, Toxicology, vol.171, issue.1, pp.3-59, 2002.
DOI : 10.1016/S0300-483X(01)00569-8

N. V. Soucy, H. D. Parkinson, M. A. Sochaski, and S. J. Borghoff, Kinetics of Genistein and Its Conjugated Metabolites in Pregnant Sprague-Dawley Rats Following Single and Repeated Genistein Administration, Toxicological Sciences, vol.90, issue.1, pp.230-240, 2006.
DOI : 10.2174/1381612043383683

D. M. Stout, . Ii, K. D. Bradham, P. P. Egeghy, P. A. Jones et al., American Healthy Homes Survey: A National Study of Residential Pesticides Measured from Floor Wipes, Environmental Science & Technology, vol.43, issue.12, pp.4294-4300, 2009.
DOI : 10.1021/es8030243

T. Takaku, K. Mikata, M. Matsui, K. Nishioka, N. Isobe et al., -Permethrin and Its Major Metabolites, PBalc and PBacid, in Humans, Journal of Agricultural and Food Chemistry, vol.59, issue.9, pp.5001-5005, 2011.
DOI : 10.1021/jf200032q

R. Tornero-velez, J. Davis, E. J. Scollon, J. M. Starr, R. W. Setzer et al., A Pharmacokinetic Model of cis- and trans-Permethrin Disposition in Rats and Humans With Aggregate Exposure Application, Toxicological Sciences, vol.22, issue.1, pp.33-47, 2012.
DOI : 10.1038/jes.2012.12

J. Ueyama, I. Saito, and M. Kamijima, Analysis and evaluation of pyrethroid exposure in human population based on biological monitoring of urinary pyrethroid metabolites, Journal of Pesticide Science, vol.35, issue.2, pp.87-98, 2010.
DOI : 10.1584/jpestics.R10-01

M. M. Ulaszewska, P. Ciffroy, F. Tahraoui, F. A. Zeman, E. Capri et al., Interpreting PCB levels in breast milk using a physiologically based pharmacokinetic model to reconstruct the dynamic exposure of Italian women, Journal of Exposure Science & Environmental Epidemiology, vol.5, issue.6, pp.601-609, 2012.
DOI : 10.1007/s10653-011-9382-6

URL : https://hal.archives-ouvertes.fr/ineris-00963410

U. Epa, Overview of Permethrin Risk Assessment, U.S. Environmental Protection Agency, 2005.

U. Epa, Pesticides Industry Sales and Usage : 2006 and, Market Estimates. U.S. Environmental Protection Agency, 2007.

M. A. Verner, P. Plusquellec, G. Muckle, P. Ayotte, E. Dewailly et al., Alteration of infant attention and activity by polychlorinated biphenyls: Unravelling critical windows of susceptibility using physiologically based pharmacokinetic modeling, NeuroToxicology, vol.31, issue.5, pp.424-431, 2010.
DOI : 10.1016/j.neuro.2010.05.011

R. D. Verschoyle and W. N. Aldridge, Structure-activity relationships of some pyrethroids in rats, Archives of Toxicology, vol.6, issue.5450, pp.325-329, 1980.
DOI : 10.1007/BF00293813

G. M. Waites, Thermoregulation of the Scrotum and Testis: Studies in Animals and Significance for Man, Adv Exp Med Biol, vol.286, pp.9-17, 1991.
DOI : 10.1007/978-1-4684-5913-5_2

B. Wei, S. S. Isukapalli, and C. P. Weisel, Studying permethrin exposure in flight attendants using a physiologically based pharmacokinetic model, Journal of Exposure Science & Environmental Epidemiology, vol.1, issue.4, pp.416-427, 2013.
DOI : 10.1038/sj.jea.7500257

B. A. Wetmore, J. F. Wambaugh, S. S. Ferguson, M. A. Sochaski, D. M. Rotroff et al., Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment, Toxicological sciences : an official journal of the Society of Toxicology, pp.157-174, 2012.
DOI : 10.1289/ehp.0800404

M. E. Willemin, A. Kadar, G. De-sousa, E. Leclerc, R. Rahmani et al., In vitro human metabolism of permethrin isomers alone or as a mixture and the formation of the major metabolites in cryopreserved primary hepatocytes, Toxicology in Vitro, vol.29, issue.4, pp.803-812, 2015.
DOI : 10.1016/j.tiv.2015.03.003

URL : https://hal.archives-ouvertes.fr/ineris-01855035

M. J. Wolansky and J. A. Harrill, Neurobehavioral toxicology of pyrethroid insecticides in adult animals: A critical review, Neurotoxicology and Teratology, vol.30, issue.2, pp.55-78, 2008.
DOI : 10.1016/j.ntt.2007.10.005

B. H. Woollen, J. R. Marsh, W. J. Laird, and J. E. Lesser, The metabolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration, Xenobiotica, vol.27, issue.2, pp.983-991, 1992.
DOI : 10.1021/jf60222a059

H. A. Young, J. D. Meeker, S. E. Martenies, Z. I. Figueroa, D. B. Barr et al., Environmental exposure to pyrethroids and sperm sex chromosome disomy: a cross-sectional study, Environmental Health, vol.12, issue.1, 2013.
DOI : 10.1038/aja.2009.85

J. Zastre, C. Dowd, J. Bruckner, and A. Popovici, Lack of P-Glycoprotein-Mediated Efflux and the Potential Involvement of an Influx Transport Process Contributing to the Intestinal Uptake of Deltamethrin, cis-Permethrin, and trans-Permethrin, Toxicological Sciences, vol.21, issue.2, pp.284-293, 2013.
DOI : 10.1023/B:PHAM.0000036925.45002.a2

F. A. Zeman, C. Boudet, K. Tack, A. Floch-barneaud, C. Brochot et al., Exposure assessment of phthalates in French pregnant women: Results of the ELFE pilot study, International Journal of Hygiene and Environmental Health, vol.216, issue.3, pp.271-279, 2013.
DOI : 10.1016/j.ijheh.2012.12.005

URL : https://hal.archives-ouvertes.fr/ineris-00963467

S. Zhang, J. Ueyama, Y. Ito, Y. Yanagiba, A. Okamura et al., Permethrin may induce adult male mouse reproductive toxicity due to cis isomer not trans isomer, Toxicology, vol.248, issue.2-3, pp.136-141, 2008.
DOI : 10.1016/j.tox.2008.03.018

S. Y. Zhang, Y. Ito, O. Yamanoshita, Y. Yanagiba, M. Kobayashi et al., Permethrin May Disrupt Testosterone Biosynthesis via Mitochondrial Membrane Damage of Leydig Cells in Adult Male Mouse, Endocrinology, vol.148, issue.8, pp.3941-3949, 2007.
DOI : 10.1210/en.2006-1497

, Fat:blood (PCfat) 150 ± 75, pp.171-301

, GI:blood (PCgi) Equal to PCkid Equal to PCkid - - Kidney:blood (PCkid) 0.4 ± 0

, Liver:blood, p.89

, Muscle:blood (PCmus), vol.6, issue.3

, Testes:blood (PCtes) 0.4 ± 0.2 [10 -3 -30] Equal to PCbra 0, p.63

, 54 -0.72] - Rapidly perfused:blood (PCrp) Equal to PCkid Equal to PCkid - - Slowly perfused:blood (PCsp), pp.6-9

. Permeability, Brain (PAbra) 10 -3 ± 10 -3

, Fat

, Muscles

, Testes (PAtes) 10 -3 ± 10 -3

, Equal to PAbra/3 3, pp.10-14

, 4 ] - Slowly perfused (PAsp) 0.1 ± 0

, Rate constants (h -1 ) Stomach-intestine transfer (Ksi) 0

, 17 -0.23] Intestinal absorption (Kint) 0

, 68 -1.06] Metabolic clearances GI metabolism

, Kblo) Fixed to 0.07 Fixed to 0.29 - - Liver metabolism, Blood

, 2 -3.3] - - Permeability coefficients (L/h) Rest of body:blood (PArb)

, 18 -0.34] - - Fraction of metabolite formed Fraction (Fracmet)

, Rate constants Fecal excretion (h -1 ) (Kfec) 0

, Cis-permethrin Partition coefficients Liver:blood (PCliv) 10 ± 5 [1 -30

, 3 -7.6] - - Rest of body:blood (PCrb) 10 ± 5 [1 -30

, 7 -4.1] - - Permeability coefficients (L/h) Rest of body:blood (PArb)

, 72 -0.98] - - Fraction of metabolite formed Fraction (Fracmet)

, Rate constants Fecal excretion (h -1 ) (Kfec) 0

, 103] a : the urine clearance of the DCCA is expressed in L/h and the rate of urine elimination of 3-PBA and 4'-OH-PBA in h, p.1