P. Anastas, J. Warner, and G. Chemistry, Theory and Practice, 1998.

Z. Chang, Y. Yang, M. Li, X. Wang, and Y. Wu, Green energy storage chemistries based on neutral aqueous electrolytes, J. Mater. Chem. A, vol.31, issue.28, pp.10739-10755, 2014.
DOI : 10.1016/j.elecom.2013.03.013

P. Foley, A. Phimphachanh, E. Beach, J. Zimmerman, and P. Anastas, Linear and cyclic C-glycosides as surfactants, Green Chem., vol.1, issue.2, pp.321-325, 2011.
DOI : 10.1016/S0040-4039(00)90454-4

P. Anastas and M. Kirchhoff, Accounts of Chemical Research, vol.35, issue.9, pp.686-694, 2002.
DOI : 10.1021/ar010065m

D. Hjeresen, M. Kirchhoff, R. Lankey, and G. Chemistry, Green Chemistry: Environment, Economics, and Competitiveness, Corporate Environmental Strategy, vol.9, issue.3, pp.259-266, 2002.
DOI : 10.1016/S1066-7938(02)00068-4

J. Clark and S. Tavener, Alternative Solvents:?? Shades of Green, Organic Process Research & Development, vol.11, issue.1, pp.149-155, 2007.
DOI : 10.1021/op060160g

C. Capello, U. Fischer, and K. Hungerbuhler, What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chemistry, vol.7, issue.17, pp.927-934, 2007.
DOI : 10.1039/b617536h

M. Hay, D. Thomas, J. Craighead, C. Economides, and J. Rosenthal, Clinical development success rates for investigational drugs, Nature Biotechnology, vol.32, issue.1, pp.40-51, 2014.
DOI : 10.1002/mde.1360

J. Dimasi, Success rates for new drugs entering clinical testing in the United States, Clinical Pharmacology & Therapeutics, vol.63, issue.1, pp.1-14, 1995.
DOI : 10.1002/cpt1978242133

K. Wolf, A. Yazdani, and P. Yates, Chlorinated Solvents: Will the Alternatives be Safer?, Journal of the Air & Waste Management Association, vol.41, issue.8, pp.1055-1061, 1991.
DOI : 10.1080/10473289.1991.10466899

S. Aparicio and R. Alcalde, The green solventethyl lactate: an experimental and theoretical characterization, Green Chem., vol.104, issue.132, pp.65-78, 2009.
DOI : 10.1080/00268970600751078

C. Cramer, Essentials of Computational Chemistry -Theories and Models, 2004.

D. Young and C. Chemistry, A Practical Guide for Applying Techniques to Real-World Problems, 2001.

C. Nieto-draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau et al.,

B. Rousseau and C. Adamo, A General Guidebook for the Theoretical Prediction of Physico-Chemical Properties of Chemicals for Regulatory Purposes, Chem Rev, vol.115, pp.13093-13164, 2015.

L. Li, J. Hu, Y. Ho, G. Performance, T. et al., Global Performance and Trend of QSAR/QSPR Research: A Bibliometric Analysis, Molecular Informatics, vol.656, issue.10, pp.655-668, 2014.
DOI : 10.1016/0021-9673(93)80812-M

F. Bajot, The Use of Qsar and Computational Methods in Drug Design, Recent Advances in QSAR Studies, pp.261-282, 2010.
DOI : 10.1007/978-1-4020-9783-6_9

T. Schultz, M. Cronin, J. Walker, and A. Aptula, Quantitative structure???activity relationships (QSARs) in toxicology: a historical perspective, Journal of Molecular Structure: THEOCHEM, vol.622, issue.1-2, pp.1-22, 2003.
DOI : 10.1016/S0166-1280(02)00614-0

M. Pavan and A. Worth, Review of Estimation Models for Biodegradation, QSAR & Combinatorial Science, vol.18, issue.1, pp.32-40, 2008.
DOI : 10.1002/qsar.200710117

A. Katritzky, M. Kuanar, S. Slavov, C. Hall, M. Karelson et al., Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction, Chemical Reviews, vol.110, issue.10, pp.5714-5789, 2010.
DOI : 10.1021/cr900238d

J. Dearden, P. Rotureau, and G. Fayet, QSPR prediction of physico-chemical properties for REACH, SAR and QSAR in Environmental Research, vol.1, issue.4, pp.545-584, 2013.
DOI : 10.1016/j.chemosphere.2006.09.049

URL : https://hal.archives-ouvertes.fr/ineris-00971003

F. Quintero, S. Patel, F. Munoz, and M. Mannan, Review of Existing QSAR/QSPR Models Developed for Properties Used in Hazardous Chemicals Classification System, Industrial & Engineering Chemistry Research, vol.51, issue.49, pp.16101-16115, 2012.
DOI : 10.1021/ie301079r

M. Karelson, M. Descriptors-in, Q. Qspr, and . Wiley, , 2000.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 2000.
DOI : 10.1002/9783527613106

J. Gasteiger and J. Zupan, Neural Networks in Chemistry, Angewandte Chemie International Edition in English, vol.32, issue.4, pp.503-527, 1993.
DOI : 10.1002/anie.199305031

O. Ivanciuc, Applications of Support Vector Machines in Chemistry, In Reviews in Computational Chemistry, pp.291-400, 2007.
DOI : 10.1002/9780470116449.ch6

D. Rio, A. Gasteiger, and J. , Encoding Absolute Configurations with Chiral Enantiophore Descriptors. Application to the Order of Elution of Enantiomers in Liquid Chromatography, QSAR Comb Sci, vol.27, pp.1326-1336, 2008.

M. Shahlaei and . Descriptor, Descriptor Selection Methods in Quantitative Structure???Activity Relationship Studies: A Review Study, Chemical Reviews, vol.113, issue.10, pp.8093-8103, 2013.
DOI : 10.1021/cr3004339

J. Valadi, P. Siarry, N. Sukumar, G. Prabhu, and P. Saha, Applications of Genetic Algorithms in QSAR/QSPR Modeling, Applications of Metaheuristics in Process Engineering, pp.315-324, 2014.

J. Dearden, M. Cronin, and K. Kaiser, How not to develop a quantitative structure???activity or structure???property relationship (QSAR/QSPR), SAR and QSAR in Environmental Research, vol.1, issue.3-4, pp.241-266476, 2009.
DOI : 10.1021/ci700332k

P. Gramatica, Principles of QSAR models validation: internal and external, QSAR & Combinatorial Science, vol.15, issue.5, pp.694-701, 2007.
DOI : 10.1002/9783527615452.ch5

C. Rücker, G. Rücker, M. Meringer, and Y. , y-Randomization and Its Variants in QSPR/QSAR, Journal of Chemical Information and Modeling, vol.47, issue.6, pp.2345-2357, 2007.
DOI : 10.1021/ci700157b

N. Chirico and P. Gramatica, Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient, Journal of Chemical Information and Modeling, vol.51, issue.9, pp.2320-2335, 2011.
DOI : 10.1021/ci200211n

N. Chirico and P. Gramatica, Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection, Journal of Chemical Information and Modeling, vol.52, issue.8
DOI : 10.1021/ci300084j

, J Chem Inf Model, vol.52, pp.2044-2058, 2012.

V. Consonni, D. Ballabio, and R. Todeschini, Evaluation of model predictive ability by external validation techniques, Journal of Chemometrics, vol.41, issue.3-4, pp.194-201, 2010.
DOI : 10.1021/ci000066d

J. Jaworska, N. Nikolova-jeliazkova, A. T. Eriksson, L. Jaworska, J. Worth et al., QSAR applicability domain estimation by projection of the training set in descriptor space: A review Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs, Altern Lab Anim Environ Health Persp, vol.33, issue.111, pp.445-4591361, 2003.

T. Le, V. Epa, F. Burden, and D. Winkler, Quantitative Structure-Property Relationship Modeling of Diverse Materials Properties Regulation (EC) N°1272/2008 of the European Parliament and of the Council of 16 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67, Fayet G, Rotureau P, Joubert L and Adamo C, Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms, pp.2889-2919, 1907.

, J Mol Model, vol.17, pp.2443-2453, 2011.

G. Fayet, L. Joubert, P. Rotureau, and C. Adamo, -Nitrotoluenes, The Journal of Physical Chemistry A, vol.113, issue.48, pp.13621-13627, 2009.
DOI : 10.1021/jp905979w

G. Fayet and P. Rotureau, Development of simple QSPR models for the impact sensitivity of nitramines 43. UN, Recommandations on the Transport of Dangerous Goods: Manual of Tests and Criteria, 5th revised Edition, J Loss Prevent Proc Ind United Nations, vol.30, pp.1-8, 2011.

G. Fayet, P. Rotureau, V. Prana, and C. Adamo, Global and local quantitative structure-property relationship models to predict the impact sensitivity of nitro compounds, Process Safety Progress, vol.23, issue.3, pp.291-303, 2012.
DOI : 10.1063/1.1740588

URL : https://hal.archives-ouvertes.fr/ineris-00961780

G. Fayet, D. Rio, A. Rotureau, P. Joubert, L. Adamo et al., Predicting the Thermal Stability of Nitroaromatic Compounds Using Chemoinformatic Tools, Molecular Informatics, vol.27, issue.6-7, pp.623-634, 2011.
DOI : 10.1002/qsar.200810066

URL : https://hal.archives-ouvertes.fr/ineris-00963310

V. Prana, P. Rotureau, G. Fayet, D. André, S. Hub et al., Prediction of the thermal decomposition of organic peroxides by validated QSPR models, Journal of Hazardous Materials, vol.276, pp.216-224, 2014.
DOI : 10.1016/j.jhazmat.2014.05.009

URL : https://hal.archives-ouvertes.fr/ineris-01862412

R. Benassi, U. Folli, S. Sbardellati, and F. Taddei, Conformational properties and homolytic bond cleavage of organic peroxides. I. An empirical approach based upon molecular mechanics andab initio calculations, Journal of Computational Chemistry, vol.55, issue.4, pp.379-391, 1993.
DOI : 10.1071/CH9600038

R. Benassi and F. Taddei, Homolytic bond-dissociation in peroxides, peroxyacids, peroxyesters and related radicals: ab-initio MO calculations., Tetrahedron, vol.50, issue.16, pp.4795-4810, 1994.
DOI : 10.1016/S0040-4020(01)85017-1

A. Diallo, G. Fayet, C. Len, and G. Marlair, Evaluation of Heats of Combustion of Ionic Liquids through Use of Existing and Purpose-Built Models, Industrial & Engineering Chemistry Research, vol.51, issue.7, pp.3149-3156, 2012.
DOI : 10.1021/ie2023788

URL : https://hal.archives-ouvertes.fr/ineris-00963366

D. Saldana, L. Starck, P. Mougin, B. Rousseau, and B. Creton, Prediction of Flash Points for Fuel Mixtures Using Machine Learning and a Novel Equation, Energy & Fuels, vol.27, issue.7, pp.3811-3820, 2013.
DOI : 10.1021/ef4005362

T. Gaudin, P. Rotureau, and G. Fayet, Combining mixing rules with QSPR models for pure chemicals to predict the flash points of binary organic liquid mixtures, Fire Safety Journal, vol.74, pp.61-70, 2014.
DOI : 10.1016/j.firesaf.2015.04.006

URL : https://hal.archives-ouvertes.fr/ineris-01862519

H. Liaw, V. Gerbaud, and C. Chiu, Flash Point for Ternary Partially Miscible Mixtures of Flammable Solvents, Journal of Chemical & Engineering Data, vol.55, issue.1, pp.134-146, 2009.
DOI : 10.1021/je900287r

T. Gaudin, P. Rotureau, and G. Fayet, Mixture Descriptors toward the Development of Quantitative Structure???Property Relationship Models for the Flash Points of Organic Mixtures, Industrial & Engineering Chemistry Research, vol.54, issue.25, pp.6596-6604, 2015.
DOI : 10.1021/acs.iecr.5b01457

URL : https://hal.archives-ouvertes.fr/ineris-01862521

C. Rücker and K. Kümmerer, Modeling and predicting aquatic aerobic biodegradation ??? a review from a user's perspective, Green Chemistry, vol.3, issue.4, pp.875-887, 2015.
DOI : 10.1016/j.egypro.2009.01.170

M. Cronin and A. Worth, (Q)SARs for Predicting Effects Relating to Reproductive Toxicity, QSAR & Combinatorial Science, vol.36, issue.1, pp.91-100, 2008.
DOI : 10.1289/ehp.7125

T. Netzeva, M. Pavan, and A. Worth, Review of (Quantitative) Structure???Activity Relationships for Acute Aquatic Toxicity, QSAR & Combinatorial Science, vol.11, issue.1, pp.77-90, 2008.
DOI : 10.1007/978-1-4020-6102-8_10

J. Gasteiger, T. Engel, and C. Textbook, , 2003.

V. Kumar, S. Krishna, and M. Siddiqi, Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents, Methods, vol.71, pp.64-70, 2015.
DOI : 10.1016/j.ymeth.2014.08.010

J. Comley and . Tools, Tools and Technologies that Facilitate Automated Screening, High-Throughput Screening in Drug Discovery, pp.37-73, 2006.
DOI : 10.1002/9783527609321.ch3

T. Oprea, A. Tropsha, and . Target, Target, chemical and bioactivity databases ??? integration is key, Drug Discovery Today: Technologies, vol.3, issue.4, pp.357-365, 2006.
DOI : 10.1016/j.ddtec.2006.12.003

E. Muratov, E. Varlamova, A. Artemenko, P. Polishchuk, . Kuz-'min et al., Existing and Developing Approaches for QSAR Analysis of Mixtures, Chemoinformatics Approaches to Virtual Screening, pp.202-221, 2006.
DOI : 10.1080/10629360601033598

S. Zhang, L. Wei, K. Bastow, W. Zheng, A. Brossi et al.,

, Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents, J Comput Aid Mol Des, vol.21, pp.97-112, 2007.

, ChemDiv Database. www.chemdiv.com, 2015.

P. Harper, R. Gani, P. Kolar, and T. Ishikawa, Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equil 158, pp.337-347, 1999.

A. Karunanithi, L. Achenie, and R. Gani, A computer-aided molecular design framework for crystallization solvent design, Chemical Engineering Science, vol.61, issue.4, pp.1247-1260, 2006.
DOI : 10.1016/j.ces.2005.08.031

K. Satyanarayana, J. Abildskov, and R. Gani, Computer-aided polymer design using group contribution plus property models, Computers & Chemical Engineering, vol.33, issue.5, pp.1004-1013, 2009.
DOI : 10.1016/j.compchemeng.2008.09.021

M. Mattei, G. Kontogeorgis, and R. Gani, A comprehensive framework for surfactant selection and design for emulsion based chemical product design, Fluid Phase Equilibria, vol.362, pp.288-299, 2014.
DOI : 10.1016/j.fluid.2013.10.030

D. Weis and D. Visco, Computer-aided molecular design using the Signature molecular descriptor: Application to solvent selection, Computers & Chemical Engineering, vol.34, issue.7, pp.1018-1029, 2010.
DOI : 10.1016/j.compchemeng.2009.10.017

L. Moity, V. Molinier, A. Benazzouz, R. Barone, P. Marion et al., In silico design of bio-based commodity chemicals: application to itaconic acid based solvents, Green Chem., vol.58, issue.1, pp.146-160, 2014.
DOI : 10.1002/aic.12704

J. Heintz, J. Belaud, N. Pandya, T. Santos, M. Gerbaud et al., Computer aided product design tool for sustainable product development, Computers & Chemical Engineering, vol.71, pp.362-376, 2014.
DOI : 10.1016/j.compchemeng.2014.09.009

URL : https://hal.archives-ouvertes.fr/hal-01093173

I. Bechthold, K. Bretz, S. Kabasci, R. Kopitzky, A. Springer et al., Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources, Chemical Engineering & Technology, vol.92, issue.5, pp.647-654, 2008.
DOI : 10.1002/pol.1973.130110311

M. Dusselier, P. Van-wouwe, A. Dewaele, E. Makshina, and B. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy & Environmental Science, vol.100, issue.182, pp.1415-14422070, 2004.
DOI : 10.1016/j.biortech.2008.09.053

R. Gugisch, R. Laue, A. Kerber, A. Kohnert, M. Meringer et al., Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities, Fluid Phase Equil, vol.261, pp.434-443, 2007.

T. Miyao, M. Arakawa, and K. Funatsu, Exhaustive Structure Generation for Inverse-QSPR/QSAR

, Mol Inform, vol.29, pp.111-125, 2010.

V. Prana, G. Fayet, P. Rotureau, and C. Adamo, Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds, Journal of Hazardous Materials, vol.235, issue.236, pp.169-177, 2012.
DOI : 10.1016/j.jhazmat.2012.07.036

URL : https://hal.archives-ouvertes.fr/ineris-00961786

J. Xu, L. Zhu, D. Fang, L. Wang, S. Xiao et al., QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors, Journal of Molecular Graphics and Modelling, vol.36, pp.10-19, 2012.
DOI : 10.1016/j.jmgm.2012.03.002

R. Wang, J. Jiang, Y. Pan, H. Cao, and Y. Cui, Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices, Journal of Hazardous Materials, vol.166, issue.1, pp.155-186, 2009.
DOI : 10.1016/j.jhazmat.2008.11.005

F. Gharagheizi, Prediction of upper flammability limit percent of pure compounds from their molecular structures, Journal of Hazardous Materials, vol.167, issue.1-3, pp.507-510, 2009.
DOI : 10.1016/j.jhazmat.2009.01.002

F. Gharagheizi, A new group contribution-based model for estimation of lower flammability limit of pure compounds, Journal of Hazardous Materials, vol.170, issue.2-3, pp.595-604, 2009.
DOI : 10.1016/j.jhazmat.2009.05.023

F. Carroll, C. Lin, and F. Quina, Simple Method to Evaluate and to Predict Flash Points of Organic Compounds, Industrial & Engineering Chemistry Research, vol.50, issue.8, pp.4796-4800, 2011.
DOI : 10.1021/ie1021283

J. Rowley, D. Freeman, R. Rowley, J. Oscarson, N. Giles et al., Flash Point: Evaluation, Experimentation and Estimation, International Journal of Thermophysics, vol.147, issue.4-5, pp.875-887, 2010.
DOI : 10.1021/ci010043e

L. Hall and C. Story, Journal of Chemical Information and Computer Sciences, vol.36, issue.5, pp.1004-1014, 1996.
DOI : 10.1021/ci960375x

F. Gharagheizi, An accurate model for prediction of autoignition temperature of pure compounds, Journal of Hazardous Materials, vol.189, issue.1-2, pp.211-221, 2011.
DOI : 10.1016/j.jhazmat.2011.02.014

H. Liaw, V. Gerbaud, and Y. Li, Prediction of miscible mixtures flash-point from UNIFAC group contribution methods, Fluid Phase Equilibria, vol.300, issue.1-2, pp.70-82, 2011.
DOI : 10.1016/j.fluid.2010.10.007