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Introduction

Background
Advances in molecular and cell biology 
provide new insights into the etiology of 
human disease, largely by evaluating molec-
ular events that influence cell function and 
interactions (Audouze et al. 2013; Hood and 

Tian 2012; McCullough et al. 2014, 2016; 
McHale et al. 2012; Thomas R. et al. 2014). 
High-throughput and high-content (HT/HC) 
assays and robotic implementation are gener-
ating data streams at unprecedented speeds. 
Computational tools, automated analytical 
methods (bioinformatics), and systems 
biology approaches are being developed to 

organize and interpret the information 
(Attene-Ramos et al. 2013, 2015; U.S. EPA 
2016; Freitas et al. 2014; Hsu et al. 2014; 
Huang et al. 2014, 2016; Judson et al. 2011, 
2012, 2013, 2014, 2015). The National 
Library of Medicine databases, Tox21 
(Toxicity Testing in the 21st Century), and 
ToxCast™ (Toxicity ForeCaster) are among 
the efforts to compile, organize, manage, and 
store these data to better understand deter-
minants of population health (U.S. EPA 
2016; Krewski et al. 2014; NRC 2009) and 
to help answer such questions as: Which 
chemicals are environmentally better choices 
in commerce? Why do individuals and 
specific subpopulations respond differently 
to chemical exposures? What happens when 
people are exposed to low levels of multiple 
chemicals? How do factors like socioeconomic 
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Background: The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration 
among several organizations evaluating new, potentially more efficient molecular, computational, 
and systems biology approaches to risk assessment. This article summarizes our findings, suggests 
applications to risk assessment, and identifies strategic research directions.

oBjective: Our specific objectives were to test whether advanced biological data and methods could 
better inform our understanding of public health risks posed by environmental exposures.

Methods: New data and methods were applied and evaluated for use in hazard identification and dose–
response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. 
Consideration was given to various decision contexts with increasing regulatory and public health 
impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular 
epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, 
short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling.

discussion: NexGen has advanced our ability to apply new science by more rapidly identifying chem-
icals and exposures of potential concern, helping characterize mechanisms of action that influence 
conclusions about causality, exposure–response relationships, susceptibility and cumulative risk, and 
by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive 
discussion among risk scientists and managers and improved confidence in interpreting and applying 
new data streams.

conclusions: While considerable uncertainties remain, thoughtful application of new knowledge to 
risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or 
augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals.
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status and pre-existing illness influence public 
health risk? How might evaluating and 
applying these data, methods, and models 
support environmental health decisions?

A revolution in molecular, computational, 
and systems biology has occurred over the 
past 25 years, providing dramatic insights into 
the causation of disease. This new science, 
however, has not been extensively incorpo-
rated into environmental health risk assess-
ment, although much related research is 
occurring. To evaluate how new data types and 
approaches can inform environmental health 
risk assessments, the U.S. Environmental 
Protection Agency (EPA) collaborated with 
several U.S. and international agencies and 
organizations (see Table S1). We considered 
the state of science and developed illustrative 
prototypes (case studies) demonstrating various 
approaches that investigators could apply to 
different risk management problems. Our goal 
was to provide examples that would promote 
discussion in the risk assessment, risk manage-
ment, and stakeholder communities and that 
would facilitate the transition from strategy to 
practical application.

In this article, we summarize the results of 
more than 40 separate publications resulting 
from our collaborative efforts, along with 
a few key papers by other authors; identify 
potential application to risk assessment; and 
articulate strategic research directions. A 
detailed report of our efforts with an exten-
sive review of the general literature (~ 400 
references) is also available (U.S. EPA 2014). 
Toxicity testing and risk assessment are antici-
pated to benefit from these advances (Krewski 
et al. 2014; NRC 2007).

Objectives
Our specific objectives were to test whether 
new data sources and risk assessment methods 
would help a) identify specific patterns of 
molecular events that are associated with 
impacts of chemical exposures (hazard 

identification); b) characterize exposure–dose 
within the range of environmental exposures 
(dose–response); c) inform risk factors such as 
genomic variants, chemical and nonchemical 
stressor co-exposures (risk modifiers); and 
d) improve indicators of adverse health effects 
and chemical potency (toxicity surrogates). 
We also considered how new types of assess-
ments might address differing risk manage-
ment needs or risk context and help develop 
decision rules for integrating and applying the 
available data.

Methods
We applied and evaluated diverse types of 
data and methods to determine if, and how, 
advanced biological data would better inform 
risk assessments.

Preparation for Prototype 
Development
To establish the foundation for this effort, 
we a) worked with the U.S. Environmental 
Protection Agency (EPA) risk managers to 
identify research needs and develop a strategy 
for the overall approach (Cote et al. 2012); 
b) consulted with experts on the concepts for 
the prototypes (U.S. EPA 2011a); c) held a 
stakeholder conference to inform the public 
about upcoming activities and to solicit 
advice (U.S. EPA 2011b); and d) developed a 
framework articulating the guiding principles 
for NexGen (Krewski et al. 2014).

Risk Assessments Targeted to 
Various Decision Contexts
We developed eight prototypes illustrating 
three decision contexts generally representing 
environmental challenges risk managers face: 
• Major scope decisions, usually regulatory 

decision-making, generally aimed at nation-
wide exposures and associated risks.

• Limited scope decisions, often  non- regulatory 
decision-making, generally aimed at limited 
exposure, hazard, or data situations.

• Chemical screening and prioritization for 
further testing, research, or assessment or 
for emergency response (Figure 1). Decision 
contexts were derived from observation of 
problems commonly faced by the U.S. EPA 
(NRC 2009). These generalized decision 
contexts do not, and are not meant to, 
capture all decisions or situational nuances 
risk managers face.

Study Selection
Establishing systematic review criteria for 
study selection helps ensure reproducibility, 
transparency, and scientific acceptability of 
regulatory actions (McConnell et al. 2014). 
Our criteria were similar to those used for 
traditional data (e.g., adequate study design 
and reporting), augmented with addi-
tional criteria specifically applicable to new 

methodologies (Bourdon-Lacombe et al. 
2015; McConnell et al. 2014). Rapidly 
evolving best practices for advanced biology 
and certain reporting requirements led many 
initially considered studies to be deemed 
inadequate for risk assessment purposes (U.S. 
EPA 2013b, 2014; McConnell et al. 2014).

The Prototypes
This section provides an overview of the 
science considered in the prototypes. Table 1 
(adapted from Krewski et al. 2014) summa-
rizes tools and techniques evaluated in the 
prototypes, organized by decision context. 
While the tools and techniques are catego-
rized here for simplicity, they represent a 
continuum of methods that can be applied 
in various combinations to address agency 
needs. Additional details are provided both in 
the papers referenced throughout and in U.S. 
EPA (2014).

Major-scope assessment prototypes . 
Three major-scope prototypes explored how 
toxicogenomic studies of exposed human 
 populations can inform risk assessment:
• Character iz ing ear ly  key events  in 

the biological cascade that results in 
adverse outcomes.

• Identifying and characterizing biomarkers of 
exposure and effects.

• Identifying factors contributing to popula-
tion variability and susceptibility.

• Elucidating lower exposure–response 
relationship.

These prototypes used chemicals with known 
outcomes, robust traditional data, and 
substantial systems biology understanding to 
determine if new data types could accurately 
predict known outcomes—essentially proof 
of concept for use of molecular biology data 
in risk assessment. In two of the three proto-
types, we compared concomitantly collected 
traditional and new data types. We consid-
ered this an important verification step in 
order to provide us some confidence that new 
methods could be successfully applied in situ-
ations where data are limited. Additionally, 
we were interested in examples of how new 
data types could better inform unresolved 
uncertainties in chemical assessments based 
on robust traditional data.

We evaluated transcriptomic and epige-
nomic data (epidemiological and clinical) 
in the range of environmental exposures for 
three chemicals: a) benzene and other leuke-
mogens (McHale et al. 2011, 2012; Smith 
et al. 2011; Thomas R et al. 2012, 2013, 
2014); b) ozone (Duncan et al. 2012; U.S. 
EPA 2013a; Hatch et al. 2014; McCullough 
et al. 2014, 2016); and c) polycyclic aromatic 
hydrocarbons (PAHs), including tobacco 
smoke and benzo[a]pyrene (DHHS 2014; 
U.S. EPA 2013b; IARC 2010; Mattes 
et al. 2014). We also considered genomic, 
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proteomic, and epigenomic data as available, 
and molecular animal and in vitro data for 
benzene and B[a]P (U.S. EPA 2013b; French 
et al. 2015). We evaluated exposures for 
benzene of < 0.1 to 10 parts per million (ppm) 
and ozone of 0.5 ppm for 2 hr. We used indi-
vidual measures of the exposure–dose relation-
ship for benzene and ozone (benzene urinary 
metabolites (Vermeulen et al. 2004) and 
heavy oxygen-labeled ozone (18O3) (Hatch 
et al. 2014). For PAH exposures, we used 
self-reported smoking. The PAH–tobacco 
smoke prototype focused on pathway mining 
of existing human microarray data from the 
ArrayExpress (http://www.ebi.ac.uk/) and 
Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/). The toxicogenomics 
data were compared qualitatively and quanti-
tatively to known health outcomes associated 
with these chemicals, specifically hemato-
toxicity and leukemia (benzene and other 
known leukemogens), lung inflammation 
and injury (ozone), and lung cancer (PAHs). 
The results of these data-rich comparisons 
therefore enabled us to draw on a wealth of 
chemical- and disease-specific data to help 
characterize associations among upstream 
molecular changes, downstream cellular 
events, and public health outcomes. Thus, 
the potential role of toxicogenomics in hazard 
identification and dose–response assessment 
was explored.

Limited-scope assessment prototypes. 
These prototypes explored approaches falling 
between molecular human clinical and epide-
miology studies (described in “Major-scope 
assessment prototypes”) and in vitro, HT 
screening bioassays (described in “Screening 
and prioritization prototypes”) in terms of 
confidence in the data to characterize public 
health risks, resources expended to collect 
data, and the number of chemicals that can 
be evaluated in a given period. We considered 
three approaches to limited-scope assessment:
• Knowledge mining of large health databases 

[focusing on human tissue biomonitoring 
and diabetes data from NHANES (National 
Health and Nutrition Examination Survey)] 
(Bell and Edwards 2015; DeWoskin et al. 
2014; U.S. EPA 2014; Patel et al. 2012, 
2013a; Thayer et al. 2012).

• Short-duration in vivo exposures using alter-
native (nonmammalian) species (focusing on 
the thyroid hormone disruptor mechanism 
and zebrafish developmental outcomes for 
several hundred chemicals) (Padilla et al. 
2012; Perkins et al. 2013; Sipes et al. 2011a, 
2011b; Thienpont et al. 2011; Villeneuve 
et al. 2014).

Short-duration in vivo exposure rodent 
studies that correlated transcriptomic altera-
tions with cancer and noncancer outcomes as 
determined in traditional bioassays (Thomas 
RS et al. 2012a, 2013a, 2013c).

Advantages  o f  the  l imi ted- scope 
approaches compared to HT in vitro 
approaches include intact metabolism and 
intact cell and tissue interactions and the 
potential to measure adverse health outcomes, 
including complex outcomes such as altered 
behavior and development.

Screening and prioritization prototypes. 
The two screening and prioritization proto-
types are a) quantitative structure activity 

relationship (QSAR) models and use of analo-
gous chemicals to expand available informa-
tion (also called “read-across”) (Golbraikh 
et al. 2012; NAFTA Technical Working 
Group for Pesticides 2012; OECD 2016a; 
Politi et al. 2014; Wang et al. 2011, 2012a); 
and b) in vitro cell-based and biochemical-
based (including enzymatic and ligand-
binding) HT screening assays [focusing on 
evaluating thyroid hormone disruptors 

Figure 1. Three broad decision-context categories are shown across the top (white type); the eight 
“fit-for-purpose” prototypes developed for this effort are shown in black type. From left to right in Figure 1, 
the amount of traditional toxicological data available for assessment (e.g., in vivo rodent toxicity data, 
epidemiology data) and the confidence in the assessment conclusions decrease, but the number of 
chemicals that can be evaluated increases markedly.
Note: B[a]P, benzo[a]pyrene; PAHs, polycyclic aromatic hydrocarbons.
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Table 1. Prototype use of new scientific tools and techniques applied (1) or not applied (0) (adapted from 
Krewski et al. 2014).

Tools and techniques 

Tier 1:  
screening and 

prioritization for further 
testing, research, 

or assessment

Tier 2: 
limited-scope 
environmental 
problems and 
assessments

Tier 3: 
major-scope 

environmental 
problems and 
assessments

Hazard identification and dose–response assessment methods
Quantitative structure activity relationship models 1 1 0
Pathway–network analysis 1 1 1
High-throughput in vitro assays 1 1 1
High-content omics assays 0 1 1
Biomarkers of effect 0 1 1
Molecular and genetic population-based studies 0 0 1

Dosimetry and exposure assessment methods
In vitro to in vivo extrapolation 1 1 0
Pharmacokinetic models and dosimetry 1 1 1
Biomarkers of exposure and effect 0 1 1

Cross-cutting assessment methods
Adverse outcome pathways 1 1 1
Bioinformatics and computational biology 1 1 1
Systems biology 1 1 1
Functional genomics 0 1 1
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(Cox et al. 2014; Rotroff et al. 2013; Sipes 
et al. 2011a; Judson et al. 2010)]. Of note, 
although QSAR and in vitro assays are illus-
trated separately here, they often are used most 
effectively in combination. The U.S. EPA’s 
ToxCast™ program (Judson et al. 2010, 2011, 
2012, 2013, 2014; Kavlock et al. 2012) and 
the multi-agency collaborative Tox21 program 
(Attene-Ramos et al. 2013, 2015; Freitas et al. 
2014; Hsu et al. 2014; Huang et al. 2014; 
Tice et al. 2013) provide more information 
on these approaches. Virtual tissue modeling 
(DeWoskin et al. 2014; Knudsen and 
DeWoskin 2011; Knudsen et al. 2013, 2015) 
and toxicokinetic approaches (Wambaugh 
et al. 2015; Wetmore et al. 2012, 2013) also 
are discussed.

Examining human variabi l i ty  in 
responses. The data to evaluate variability and 
susceptibility are usually scant. We evaluated 
several data types to inform this issue:
• Adverse outcome networks (AON) to 

identify mechanistic commonalties among 
leukemogens and lifestyle factors (diet and 
stress) that alter leukemia risks (U.S. EPA 
2014; IARC 2012; Smith et al. 2011).

• Altered disease incidence in subpopulations 
having specific genetic polymorphisms 
(U.S. EPA 2014).

• Data for in vitro cells that retain an asthma 
phenotype in ozone studies (Duncan 
et al. 2012).

• Correlated measurements of phenotypic 
differences among diverse subpopulations 
with different incidences of given exposures 
[tissue biomonitoring using NHANES 
(U.S. EPA 2014; Patel et al. 2012, 2013a)].

• HT in vitro data from cell lines with 
different genetic backgrounds from the 
1,000 genomes effort (Abdo et al. 2015a, 
2015b; Attene-Ramos et al. 2015; Lock 
et al. 2012; O’Shea et al. 2011).

• Computational modeling in which vari-
ability in parameter values is simulated 
for differences among subpopulations 
(Knudsen and DeWoskin 2011; Shah and 
Wambaugh 2010).

Adverse outcome networks are conceptual 
mechanistic models that combine key events 
and adverse outcome pathways (AOP) into 
networks associated with specific diseases and 
disorders [see Zeise et al. (2013) and NRC 
(2011) for further details on examining 
human variability].

Results and Discussion
The NexGen prototypes help us to better 
understand and apply emerging science in a 
transparent and scientifically robust manner 
to environmental health risk assessment. 
Additionally, these prototypes help realize 
the National Research Council’s vision 
embodied in Toxicity Testing in the 21st 
Century: A Vision and a Strategy (NRC 2007; 

Krewski et al. 2011). Since this report was 
published, toxicity testing and risk assessment 
has continued shifting from the traditional, 
almost exclusive, use of animal data to using 
the new approaches the prototypes demon-
strate (Adeleye et al. 2015; Abdo et al. 2015a, 
2015b; Attene-Ramos et al. 2015; Bourdon-
Lacombe et al. 2015; EC 2016, EC and 
JRC 2015; ECHA 2016a, 2016b; U.S. EPA 
2015a, 2015b; Huang et al. 2016; JRC 2016; 
Mansouri et al. 2016; OECD 2016a, 2016b; 
Wambaugh et al. 2015). The new approaches 
consider a broader data array, foster mecha-
nistic understanding of adverse effects, and 
move toward replacing uncertainty factors 
and extrapolations with data-derived 
 probability distributions.

In each decision context category, new 
methods and data types were identified 
that could help inform assessment efforts. 
Methods illustrated in the screening and 
prioritization (Tier 1) and limited-scope 
(Tier 2) prototypes originally were designed 
for qualitative evaluation of chemicals. New 
and integrated approaches, however, are being 
developed to estimate relative potencies and 
more rapid quantitative toxicity values for use 
in certain decision contexts.

We used AOP and AON extensively to 
organize and interpret data for most of the 
prototypes and regard them as critical for 
linking molecular events to apical outcomes. 
The AOP–AON concept has gained consid-
erable traction since it was first introduced 
(Ankley et al. 2010; Davis et al. 2015; Garcia-
Reyero 2015; Geer et al. 2010; Tollefsen et al. 
2014; Vinken 2013). We use the terms AOP 
and AONs throughput this article as they are 
commonly used by many U.S. and European 
agencies (OECD 2013).

Data quality and reporting are always 
critically important. Our data searches identi-
fied many published studies that we could 
not use because the data or the reporting was 
not sufficient for use in health risk assessment 
(e.g., does not meet minimum standards 
for study design or reporting) (U.S. EPA 
2014; McConnell et al. 2014). This situa-
tion derives from the lag between establishing 
best practice criteria and full implementation 
in the research community, and inconsis-
tent application of criteria for data quality 
and reporting (U.S. EPA 2014; McConnell 
et al. 2014). 

Integrating the available data into a 
coherent analysis is also a challenge. Table S2 
presents the evidence integration frame-
work used for the prototypes. The frame-
work focuses on evaluating and integrating 
evidence and drawing conclusions based on 
inferences drawn from new data types. To 
our knowledge this illustrative framework 
is the most complete illustration of using 
a new data type in a variety of assessment 

situations. More limited examples of evidence 
integration using new approaches include 
a) the International Agency for Research on 
Cancer’s determination of a likely causal link 
between benzene exposures and lymphoma 
based on molecular mechanisms data (IARC 
2012); b) the U.S. EPA’s cumulative risk 
evaluation of relatively uncharacterized 
conazole fungicides based on molecular 
mechanisms data (U.S. EPA 2011d); c) the 
U.S. EPA’s use of toxicogenomic data in the 
Endocrine Disruptor Screening Program 
(EDSP) (Mansouri et al .  2016; U.S. 
EPA 2011c); d) OECD’s guidance on use 
of adverse outcome pathways in toxicity 
evaluations (OECD 2013); and e) OECDs 
guidance on the use of quantitative structure 
activity data to evaluate relative toxicity, and 
other activities on molecular screening and 
 toxicogenomics (OECD 2016a, 2016b).

Major-Scope Assessment 
Prototypes (Tier 3)
We designed the Tier 3 prototypes to 
determine whether new data types could 
provide results comparable to robust tradi-
tional data. We also evaluated whether new 
data types could add to information robust 
traditional data sets provide. Support for 
this hypothesis and several sources of vari-
ability are given below (U.S. EPA 2013a, 
2014; Esposito et al. 2014; Hatch et al. 
2014; McCullough et al. 2014; McHale et al. 
2011, 2012; Smith 2010; Smith et al. 2011; 
Thomas R et al. 2014). Highlights from the 
 prototypes include:
• AONs, once verified for accuracy, are useful 

in predicting specific hazards [e.g., benzene 
and other known leukemogens (hemato-
toxicity) (U.S. EPA 2014; IARC 2010; 
McHale et al. 2012; Smith 2010; Smith 
et al. 2011; Thomas R et al. 2012, 2014), 
ozone (lung inflammation and injury) (U.S. 
EPA 2013a, 2014; McCullough et al. 2014, 
2016; Wu et al. 2015), and PAHs (lung 
cancer) (U.S. EPA 2013b, 2014; Mattes 
et al. 2014)].

• Related chemical and nonchemical stressors 
(known to cause or exacerbate the same 
adverse health outcome) were shown to 
perturb various pathways within the same 
disease associated network, but do not 
always affect the same expressed genes or 
pathway (U.S. EPA 2014). Hence, overly 
simplistic descriptions of AOPs could miss 
the potential for network-level interactions. 
Evidence for a causal relationship between 
a specific AOP and adverse effects includes 
pharmacologic intervention to block iden-
tified pathway changes, use of knock-in 
and knock-out models, or identification of 
pathway polymorphisms and concomitant 
amelioration of severity or incidence of 
the specified adverse outcomes (U.S. EPA 
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2014; French et al. 2015; Hatzimichael 
and Crook 2013; Kasahara et al. 2015; 
McCullough et al. 2014; McHale et al. 
2012; Smith 2010; Thomas R et al. 2014; 
Wu et al. 2015).

• Less well-studied chemicals inducing the 
same AOP or AON could be of concern for 
concomitant health outcomes. Conversely, 
lack of an apparent mechanistic link to an 
adverse outcome might justify downgrading 
questionable in vivo data. Thus, network-
level knowledge often is highly valuable to 
understand causal mechanisms, help inte-
grate evidence, assess potential hazards of 
well-studied chemicals, provide a basis for 
cumulative assessment by grouping chemical 
and nonchemical stressors according to 
their common AOP network, and evaluate 
mechanisms underlying human suscepti-
bility (e.g., genetic differences) (Bell et al. 
2016; Carter et al. 2013; Ideker and Krogan 
2012; Kleinstreuer et al. 2016; Schadt and 
Björkegren 2012; Zhang et al. 2014; Smith 
et al. 2016).

• Biomarkers appropriately anchored to 
in vivo results can help elucidate exposure–
dose–response relationships. Thomas R 
et al. (2014), extending the work of McHale 
et al. (2011), best illustrates use of molecular 
biomarkers to potentially predict public 
health risks. They reported dose-dependent 
effects of benzene exposure on gene expres-
sion and biochemical pathways, using 
transcriptome profiling of peripheral blood 
mononuclear cells, in people (< 1 ppm to 
> 10 ppm). Benzene exposures were esti-
mated by urinary benzene levels. They esti-
mated dose–response of gene expression in 
acute myeloid leukemia (AML) and related 
pathways. Responses at or below 0.1 ppm 
benzene were observed for altered expres-
sion of AML pathway genes and CYP2E1. 
Together, these data show that benzene 
alters disease-relevant pathways and genes 
in a dose-dependent manner. It should be 
noted that while benzene is considered a 
known hematotoxicant and leukemogen, 
the benzene exposed population from 
which the toxicogenomic biomarkers 
were characterized at this time only show 
hematotoxicity (U.S. EPA 2014). The 
leukemia lag time is such that additional 
follow-up will be required to demonstrate 
if the toxicogenomic signature is predic-
tive of leukemia in the same individuals. 
Understanding the quantitative relationship 
of any biomarker to exposure and effect 
requires substantial study. A most promising 
application of biomarkers, however, is the 
ability to measure events of interest directly 
in environmentally exposed humans—an 
 application revolutionizing epidemiology.

• For benzene, ozone, and theoretically for 
PAHs, we demonstrated that multiple 

AOPs developed and progressed with 
increasing exposures (U.S. EPA 2014). 
With benzene, gene and pathway alterations 
associated with altered proliferation and 
differentiation, DNA-repair and immune 
function, among others, were discussed; 
impaired immune function was shown to 
occur at all exposure levels evaluated (from 
< 0.1 ppm to 10 ppm) (French et al. 2015; 
Thomas R et al. 2014). At higher concentra-
tions, molecular pathways and effects char-
acteristic of more severe toxicity (apoptosis 
and cell death) begin to emerge (French 
et al. 2015; Thomas R et al. 2014). Data 
collection over a range of concentrations 
thus remains essential when evaluating new 
data types. Additionally, limited time-course 
post-exposure data were available for ozone; 
various adverse outcomes involved in lung 
injury progressed after exposure, demon-
strating the potential dynamic nature of 
underlying mechanisms (U.S. EPA 2013a; 
McCullough et al. 2014, 2016).

• Chemical exposures resulting in adverse 
outcomes (e.g., benzene induced leukemia 
or ozone induced inflammation) appear to 
share AOP networks with pathologies of 
unknown origins (e.g., idiopathic or poten-
tially naturally occurring disease) (U.S. EPA 
2013a; Hatzimichael and Crook 2013; 
McCullough et al. 2014, 2016; McHale 
et al. 2012; Smith 2010; Smith et al. 2011; 
Thomas R et al. 2014; Wu et al. 2015). This 
suggests that chemically induced events 
might add to naturally occurring back-
grounds of disease via shared mechanisms 
(U.S. EPA 2014). As NRC (2009) and 
Crump et al. (1976) discuss, this observa-
tion might have implications for an assump-
tion of low-dose linearity for cancer and 
noncancer outcomes at the population level.

• The prototypes helped characterize experi-
mental and organismic factors influencing 
data interpretation, including experi-
mental variability resulting from differing 
exposure concentrations, dosimetry, time 
courses, experimental techniques, experi-
mental paradigms, cell and tissue types, 
individual genomic profiles, co-exposures, 
and lifestages (Ankley and Gray 2013; Bell 
and Edwards 2015; Cho et al. 2013; U.S. 
EPA 2014; French et al. 2015; Godderis 
et al. 2012; Hatch et al. 2014; McCullough 
et al. 2014; McHale et al. 2014; Mendrick 
2011; Perkins et al. 2013; Smith 2010; 
Smith et al. 2011; Thomas R et al. 2014; 
Thomas RS et al. 2012b; Tice et al. 2013; 
Zeise et al. 2013). Identifying causal 
events without tight control of variability 
can be difficult even knowing the adverse 
outcome, reinforcing the importance for 
careful experimentation and interpretation 
when potential outcomes are unknown 
(U.S. EPA 2014).

Limited-Scope Assessment 
Prototypes (Tier 2)
We designed the Tier 2 prototypes to evaluate 
data from knowledge mining, alternative 
species bioassays, and short-term in vivo 
studies for identifying potential hazards, 
refining mechanistic understanding, and 
characterizing the relative potencies of thou-
sands of chemicals more rapidly than possible 
with traditional methods. Confidence in 
these data generally ranks between Tier 3 
and Tier 1 approaches. Highlights from the 
 prototypes include:
• These approaches are faster and less expen-

sive than the molecular human epidemiology 
studies noted above and traditional chronic 
animal bioassays. Furthermore, unlike the 
QSAR models and HT screening data 
(discussed below), the data from in vivo 
studies are from intact organisms with 
metabolic function, normal architecture (for 
various cell and tissue types), and normal cell-
cell, tissue-tissue interactions. The data also 
can be used to study more complex system-
level adverse outcomes, such as developmental 
and  neurobehavioral outcomes.

• In the data-mining exercises, specific 
chemical exposures were associated with 
altered risks for diabetes or prediabetes 
(e.g., chlorinated organics, heavy metals, 
selected nutrients) (Bell and Edwards 2015; 
U.S. EPA 2014; Patel et al. 2012, 2013a, 
2013b). We mined exposure data from 
NHANES human tissue biomonitored levels 
and NHANES clinically defined incidence. 
Additional risk factors—multiple chemical 
exposures and genetic and lifestyle suscep-
tibility traits—were identified (Bell and 
Edwards 2015; U.S. EPA 2014; Patel et al. 
2012, 2013a, 2013b). In one example, 59% 
of people with high levels of cadmium, lead, 
and arsenic also had markers for diabetes 
(U.S. EPA 2014). The data-mining results 
are generally most suitable for hypothesis 
generation because the output only identi-
fies associations among events in very large 
data sets. The availability of biomonitoring 
data and clinical diagnoses in the same indi-
viduals, or understanding of mechanisms, 
however, is useful in an evidence analysis. 
Others also have provided traditional and 
computational data that report an associa-
tion between chemical exposure and diabetes 
(Audouze et al. 2013; Dimas et al. 2014; 
Inadera 2013; Thayer et al. 2012).

• Two Tier 2 prototypes demonstrated use 
of short-duration exposure bioassays in 
alternative species and mammalian species. 
We evaluated the results with traditional, 
molecular, and computational approaches. 
Collectively, these bioassays successfully 
identified exposure concentrations associated 
with transcriptomic changes, AOP–AON 
alterations and adverse outcomes (Padilla 
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et al. 2012; Perkins et al. 2013; Thomas RS 
et al. 2011, 2012b, 2013c; Villeneuve et al. 
2014). These prototypes provided data on 
complex mechanistic behaviors, effects of 
mixtures, and species-to-species similarities 
and differences, illustrating how these data 
could be used to evaluate potential hazards 
and chemical potencies (Ankley and Gray 
2013; LaLone et al. 2014; Padilla et al. 
2012; Painter et al. 2014; Perkins et al. 
2013; Thomas RS et al. 2013b, 2013c).

Screening and Prioritization 
Prototypes (Tier 1)
For the first time, new approaches are being 
used that can evaluate vast numbers of 
chemicals relatively rapidly. For example, 
the tens of thousands of chemicals covered 
by the European Regulation on Registration, 
Evaluation, Authorisation and Restriction of 
Chemicals (REACH) legislation are being 
evaluated using QSAR and new types of bioas-
says (EC 2016; ECHA 2016a, 2016b; JRC 
2016; OECD 2013, 2016a, 2016b). The U.S. 
Tox21 program is screening approximately 
8,500 chemicals using innovative robotic 
technology and in vitro bioassays (Tice et al. 
2013). Kavlock et al. (2012) note that “These 
tools can probe chemical-biological inter-
actions at fundamental levels, focusing on 
the molecular and cellular pathways that are 
targets of chemical disruption.” The QSAR 
models (Goldsmith et al. 2012; Venkatapathy 
and Wang 2013; Wang et al. 2012a, 2012b) 
and HT in vitro bioassays were used to 
illustrate the rapid successful screening and 
prioritization of chemicals (Judson et al. 2013; 
Kavlock et al. 2012; Kleinstreuer et al. 2014; 
Rusyn et al. 2012; Sipes et al. 2013; Tice et al. 
2013). Additional insights include:
• An essential element to evaluating and 

applying HT data within the risk paradigm 
is dose characterization. Researchers are 
developing methods using reverse dosim-
etry to extrapolate bioactive concentrations 
in in vitro test systems to the comparable 
doses for in vivo exposure to rodents (or 
other test species) or to humans [in vitro-to-
in vivo extrapolation (IVIVE)] (Abdo et al. 
2015a, 2015b; Eduati et al. 2015; Hubal 
2009; Rotroff et al. 2010; Wambaugh 
et al. 2015; Wetmore et al. 2012, 2013). 
IVIVE extrapolation supports quantitative 
comparisons of in vitro toxicity results with 
in vivo bioassay results for estimating dose–
response in human exposures.

• QSAR, in vitro, and in silico methods are 
proving useful for screening and ranking 
large numbers of chemicals for further assess-
ment and urgent-response situations where 
traditional data are lacking (Adeleye et al. 
2015; ECHA 2016a, 2016b; Eduati et al. 
2015; Judson et al. 2015; Knudsen et al. 
2015; NAFTA Technical Working Group 

on Pesticides 2012; OECD 2016a, 2016b; 
Ryan et al. 2016; Nishihara et al. 2016). 
Current estimates of human disease risks 
based exclusively on QSAR and in vitro HT 
screening generally are too uncertain for 
many applications (Casey et al. 2015; Cox 
et al. 2014; EC and JRC 2015; U.S. EPA 
2014; Settivari et al. 2015). Recent advances, 
however, are improving our understanding 
of these data. Insights into underlying 
mechanisms of toxicity, and the factors that 
might contribute to population variability 
in response to chemical exposure (Abdo 
et al. 2015a, 2015b; Duncan et al. 2012; 
Eduati et al. 2015; Lock et al. 2012; O’Shea 
et al. 2011), are also progressing from these 
data streams and increasing their utility for 
understanding risks.

Caveats Pertaining to Applying New 
Data Types in Risk Assessment
Exposure and adverse outcomes often can 
be associated with hundreds to thousands 
of gene changes, not all of which are causal 
(Mendrick 2011). Associative data can 
“suggest” a causal relationship between 
exposure and adverse health outcomes. 
Criteria to move from “suggestive” to “likely” 
causal include meta-analyses of multiple, 
independent studies yielding similar results; 
experimental evidence of causative relation-
ships between key events in AOP networks 
and consequent adverse health outcomes; or 
combinations of consistent, coherent tradi-
tional and new data types. The prototypes 
demonstrated how different types of evidence 
in each decision support category might be 
characterized with respect to establishing 
causality and evidence integration (U.S. EPA 
2014; NRC 2014). Additional caveats are 
described below. Many of these concerns 
apply to traditional, as well as new data types.

Cell type, tissue, individual, subpopula-
tion, strain, species, and test system can affect 
how specific alterations in molecular events 
manifest as adverse outcomes or disease, even 
when the molecular signature is the same 
(Ankley and Gray 2013; Bell and Edwards 
2015; Cho et al. 2013; U.S. EPA 2014; 
French et al. 2015; Godderis et al. 2012; 
Hatch et al. 2014; McCullough et al. 2014; 
McHale et al. 2014; Mendrick 2011; Perkins 
et al. 2013; Smith 2010; Smith et al. 2011; 
Thomas R et al. 2014; Thomas RS et al. 
2012b; Tice et al. 2013; Zeise et al. 2013).
• This phenomenon likely is due, at least in 

part, to dosimetry, epigenomic differences, 
and genomic plasticity, which assessments 
should consider whenever feasible.

• For many chemicals,  metabolism is 
critical to toxicity. That most HT in vitro 
test systems have limited or no metabolic 
competence should be considered. Although 
researchers are evaluating various approaches 

to add or enhance metabolic capability, 
satisfactory solutions that incorporate 
metabolism for routine screening of larger 
numbers of chemicals are not yet available. 
Consequently, although positive results are 
informative, negative results should not yet 
be interpreted as a lack of toxicity.

• Molecular profiles can be both dose and 
time dependent (Knudsen et al. 2013, 2015; 
McCullough et al. 2014; Perkins et al. 2013; 
Thomas R et al. 2014; Thienpont et al. 
2011). Predicting adverse outcomes based 
only on “snapshots” of biological events 
can therefore be challenging. Focusing on 
profiles associated with environmentally 
relevant exposures should improve predic-
tions. Some signatures do appear stable 
over time, however, and might also serve 
as reliable indicators of chronic outcomes 
(Thomas RS et al. 2013c).

• Gene expression data contain much uncer-
tainty, as messenger RNA expression levels 
cannot be used to infer protein activity 
directly. Thus, these data alone could be 
suitable only for ranking and screening and 
used in assessments to complement other 
mechanistic data.

• Our current ability to monitor multiple 
molecular processes (genomics, transcrip-
tomics, proteomics, and epigenomics) in a 
single study is very limited, primarily due to 
cost. This hampers biological integration and 
limits our understanding of how chemicals 
influence complex biological systems.

• A major challenge in using molecular data 
in risk assessment is how to use the data 
to improve predictions of adverse effects 
in humans. For example, how do changes 
in molecular events affect cells, changes in 
cells affect tissues and organs, and changes 
in organs affect the whole body? Researchers 
are collecting large amounts of HT/HC 
screening data on molecular-level effects, 
and the body of information on diseases and 
disease outcomes is substantial (http://www.
ncbi.nlm.nih.gov/geo/; EC 2016; EC and 
JRC 2015; Huang et al. 2016; Tice et al. 
2013). Very sparse chemical-specific data 
are available, however, on intermediate 
levels of organization and on the sequence of 
cellular-level disruption of normal biology to 
effects at higher organizational levels. Even 
so, tremendous strides are being made in 
 generating disease-specific information.

• Characterizing population response vari-
ability among individuals is a major chal-
lenge, given the many sources of inherent 
biological variability (e.g., genetic differ-
ences) and extrinsic influences (e.g., lifestyle, 
poverty, multiple chemical exposures). Each 
chemical exposure–health outcome pair 
involves combinations of these sources, and 
different decision contexts present distinct 
needs regarding the identification—and 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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extent of characterization—of inter-
individual variability in the human popu-
lation (see Figure 2). New approaches to 
examining variability in responses include 
a) computational modeling, in which vari-
ability in parameter values is simulated 
and differences among subpopulations 
are explored (Diaz Ochoa et al. 2013; 
Knudsen and DeWoskin 2011; Knudsen 
et al. 2015; Shah and Wambaugh 2010); 
b) HT in vitro data analysis of cell lines with 
different genetic backgrounds from the 1000 
Genomes effort (Abdo et al. 2015a, 2015b; 
Eduati et al. 2015; Lock et al. 2012; O’Shea 
et al. 2011); c) human clinical and in vivo 
animal studies in genetically diverse individ-
uals to identify genetic and epigenetic deter-
minants of susceptibility (French et al. 2015; 
Harrill et al. 2009a, 2009b; McCullough 
et al. 2016); d) comprehensive scanning of 
gene coding regions in diverse individuals to 
examine the relationships among environ-
mental exposures, interindividual sequence 
variation in human genes, and population 
disease risks (Mortensen and Euling 2013; 
NIEHS 2015); e) genome-wide association 
studies to uncover genomic loci that might 
contribute to risk of disease (NHGRI 2015; 
Wright et al. 2012); and f ) association 
studies correlating phenotypic differences 
among diverse populations with expres-
sion patterns for groups of genes based on 
coexpression (Friend 2013; Patel et al. 2012, 
2013a; Weiss et al. 2012). Additionally, 
understanding of the contribution of epig-
enomics to disease is the focus of much 
research (Ghantous et al. 2015).

• Verifying toxicity-testing schemes and 
computational models that are more effi-
cient is essential for using these new data 
and approaches for risk-based decisions. 
Central to this effort are a framework and 
criteria for determining whether the new 
data types are adequate for various types 
of decisions. While ultimately different 
methods and models based on their ability 
to predict human outcomes, they are also 
evaluated against their intended purpose. 
For example, high-throughput methods 
that can relatively rank thousands to tens 
of thousands of chemicals, with some 
certainty, based on their potential toxicity 
would be deemed extremely successful even 
though they may not be able to predict 
the specific health outcome anticipated in 
humans. Alternatively, methods and models 
relied upon to support regulation must 
contribute to the understanding of public 
health risks. The level of certainty needed 
in the data varies with their intended use 
because inaccurate results have increasing 
consequences and costs as decisions progress 
from screening, to further testing, to what 
safe chemical levels are, to what regulatory 

(or mitigation) actions should be taken 
(Crawford-Brown 2013). Traditional vali-
dation approaches that evaluate conven-
tional assay and testing structures do not 
adequately address the potential uses of 
these new data and methods and would 
require years to implement (Judson et al. 
2013). Thus, as the technology for rapid, 
efficient, robust hazard testing advances, 
the verification process also must advance 
to ensure confidence in their use. Clear and 
transparent articulation of these decision 
considerations are essential to the accep-
tance of, and support for, assessment results 
and in the overall evidence integration. 
Crawford-Brown (2013) discusses these 
issues relative to NexGen more extensively.

Based on the lessons learned in the 
NexGen program and elsewhere, several 
new types of high- and medium-throughput 
assessments are being advanced (Casey et al. 
2015; ECHA 2016b; U.S. EPA 2014, 2015b; 
Langley et al. 2015; Perkins et al. 2013; 
Settivari et al. 2015). Table 2 shows how 
characteristics of “fit-for-purpose” assessments 
could be tailored to support three illustra-
tive decision-context categories. The table lists 
potential uses for NexGen assessments, data 
sources and types in different assessment cate-
gories, exposure paradigms used, incorpora-
tion of toxicokinetics, use of traditional data, 
hazard characterization, potency metrics, 
inferences drawn about the causal associations 
between exposures and adverse outcomes, the 
numbers of chemicals that can be assessed, 
and the time to conduct any given assessment.

Research Needs
Enhancing our understanding of complex 
chemical and biological interactions at various 
levels of biological organization requires inte-
grating computational research with strategic 
laboratory studies to advance available models 
and accelerate application of new data in 
risk assessment. We suggest focusing on the 
following specific areas:
• Developing reliable, molecular biomarkers 

and bioindicators that represent a wide 
variety of chemical exposures and key events 
of pathogenesis for building confidence in 
the characterization of key events used to 
construct an AOP.

• Identifying and understanding AOP 
network interactions among different levels 
of organization for observed key events 
(genes, proteins, cells, tissues, organs, indi-
viduals, populations, and communities), 
including characterizing compensatory 
responses and their prognostic value for 
different adverse outcomes or disease states.

• Collecting data and developing methods 
for a) reverse toxicokinetics to extrapolate 
concentrations used in cellular and cell-free 
systems to in vivo tissue doses and expo-
sures, b) nonaqueous in vitro exposure 
methods for chemicals present as gases or 
as airborne particles, and c) adjusting for 
intra- and interspecies differences when 
assessing potential human effects based on 
nonhuman toxicity data.

• Developing approaches for grouping 
chemical and nonchemical stressors based on 
common key events within AOPs to enable 

Figure 2. Effects of variability in (A) pharmacokinetics (PK), (B) pharmacodynamics (PD), (C) background 
and exposures, and (D) endogenous concentrations. In (A) and (B), individuals differ in PK or PD 
 parameters. In (C) and (D), individuals have different initial baseline conditions (e.g., exposure to sources 
outside of the risk management decisions context; endogenously produced compounds) (Zeise et al. 2013). 
Reproduced with permission from Environmental Health Perspectives.
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cumulative risk assessment and consider-
ation of source apportionment with respect 
to exposures for cumulative risk assessment.

• Evaluating individual human variability due 
to lifestage vulnerabilities, genetic differences, 
pre-existing disease and exposure, or adaptive 
and compensatory capabilities and developing 
techniques to incorporate this variability into 
population-level risk assessment.

Conclusions
A revolution in molecular, computational, 
and systems biology is rapidly advancing our 
understanding of what causes disease and who 
becomes affected, and the role of environ-
mental factors on public health. This informa-
tion is just beginning to result in innovative, 
more efficient approaches to toxicity testing 
and risk assessment. This article summa-
rizes recent, multi-organizational efforts to 
understand and apply emerging science in a 
transparent and scientifically robust manner 
to environmental health risk assessment. We 
anticipate these novel methods will provide a 
more complete understanding of the biolog-
ical underpinnings of health risks and, also, 
methods and data to help evaluate the tens 
of thousands of unaddressed chemicals in the 
nation (U.S. EPA 2015c). The overarching 

challenge to risk assessors is to obtain and 
interpret sufficient data for quick and efficient 
assessment to support decisions that protect 
public health and the environment. The 
ultimate goal is to develop safer chemicals and 
to better manage risks to public health and 
the environment. The prototypes demonstrate 
how new data can be used to help address 
these challenges.

The following list presents the ongoing 
efforts to advance toxicity testing and 
risk assessment:
• Thousands of chemicals, previously having 

no or very limited traditional data, are being 
assessed based on similarities in physical–
chemical structure to known toxicants 
(QSAR modeling) and on the results of 
rapid, robotically conducted in vitro bioas-
says. These evaluations will help prioritize 
testing, research, and assessment, and 
responding in emergency response situations.

• Hundreds of chemicals are being evaluated 
by using computational analyses of large 
primary databases held in public reposi-
tories and by identifying the most impor-
tant findings in the burgeoning literature. 
These efforts are playing a central role in 
developing knowledge about the poten-
tial toxicity of chemicals and the causes of 

disease. These approaches, in combination 
with high-throughput approaches, could 
be used to support limited scope assess-
ments or to augment robust traditional 
data-based assessments.

• Developing innovative, targeted testing 
approaches that combine short-duration 
in vivo bioassays and HT approaches will 
provide even more robust information for 
testing and assessment.

• Finally, a variety of new methods are 
addressing the formidable challenges of char-
acterizing cumulative effects from exposure 
to multiple chemical and nonchemical 
stressors, susceptible subpopulations, and 
low-dose responses, primarily based on 
improving mechanistic understanding of 
adverse health effects.

Near-term efforts include developing 
additional prototypes for public input and 
peer review and providing more opportu-
nities to solicit stakeholder comments and 
participation. The U.S. EPA is developing a 
verification process for new methods and data 
types that focuses on integrating the evidence 
into various decision contexts for use by risk 
assessors and considers the external validity of 
different models in terms of human relevance 
(U.S. EPA 2014). The goal is to increase 

Table 2. Possible characteristics of fit-for-purpose assessments matched to illustrative decision-context categories.

Characteristics Tier 1: screening and prioritization Tier 2: limited-scope assessments Tier 3: major-scope assessments
Uses of NexGen assessments Screening chemicals with no data other 

than QSAR or HT data. For example,
• Queuing for research, testing, or 

assessment
• Urgent or emergency response

Generally nonregulatory decision-making. 
For example,
• Urban air toxics
• Potential water contaminants
• Hazardous waste and superfund chemicals
• Urgent or emergency response

Often regulatory decision-making. 
For example,
• National risk assessments
• Community risk assessment
• Special problems of national concern

Data sources EPA databases such as ACToR and 
ToxCast™; NIH National Center for 
Biotechnology Information (NCBI) 
databases, such as BioSystems, 
Gene Expression Omnibus, Pubchem 
(http://www.ncbi.nlm.nih.gov/
gquery/?term=NCBI)

Large public data and literature repositories 
[e.g., NIH NCBI PubChem, BioSystems; 
NHANES; European ArrayExpress 
(http://www.ebi.ac.uk/)]

All sources of policy-relevant data

New data types  
(Also uses the data from column to left)

QSAR, HT in vitro screening assays, read- 
across, AOP development

High-content assays, medium-throughput 
assays, knowledge-mined large data sets, 
AOP development

Molecular epidemiology, clinical 
and animal studies, AOP network 
development

Exposure paradigms of studies 
considered

In vitro, in silico All relevant All relevant

Metabolism in test systems Some to none Partial to intact Intact
Incorporation of toxicokinetics Reverse toxicokinetic models Reverse toxicokinetics models, biomonitoring Dosimetry and PK modeling, 

biomonitoring
Consideration of human variability and 

susceptibility
In vitro methods available In vitro and in vivo methods available In vivo methods available

Use of traditional in vivo data In vitro assays anchored to pesticide 
registration and pharmaceutical data

None to limited; especially can be used in 
AOP development

New data types augment traditional; 
traditional data currently remain basis 
for assessment

Hazards Nonspecific Nonspecific to identified Identified
Potency metrics Relative rankings based on QSAR or HT 

toxicity values
Relative rankings and toxicity values Risk distributions, cumulative & 

community risks
Likely strength of evidence linking 

exposure to effect
Suggestive to likely Suggestive to likely Suggestive to known

Numbers of chemicals that can be 
assessed

10,000s 100s–1,000s 100s

Time to conduct assessment Hours–days Hours–weeks Days–years

Note: ACToR, Aggregated Computational Toxicology Resource (U.S. EPA); NHANES, National Health and Nutrition Examination Survey; NIH, National Institutes of Health; 
PK,  pharmacokinetic.
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confidence for using these new approaches 
in risk assessment. Significant scientific gaps 
identified in the completed and ongoing 
prototypes are helping guide future research 
plans. An overview of issues being considered 
is provided by Crawford-Brown (2013).

We anticipate the prototype demon-
strations will help overcome the significant 
logistical and methodological challenges in 
interpreting and using these new data and 
methods in risk assessment. For now, major 
chemical assessments will continue to be 
driven primarily by traditional data but with 
increasing augmentation with the new types 
of data. The U.S. EPA risk managers and 
the risk assessment community at large will 
continue to be informed of the new tools and 
methods being developed with an emphasis 
on high-quality, human-relevant science and 
transparency. Historically difficult risk assess-
ment questions that this new and emerging 
knowledge are likely to inform include 
a)Why do individual and specific popula-
tions respond differently to environmental 
exposures? b) How are children at greater risk 
for certain exposures and effects? c) What 
happens when people are exposed to mixtures 
that contain very low levels of individual 
chemicals, such as those commonly found in 
the environment? d) How do other environ-
mental factors like preexisting health condi-
tions alter the response to chemical exposures? 
These are just some of the issues that NexGen 
assessments will help address to improve the 
identification of safer chemicals and reduce 
risk from exposures to hazardous chemicals 
in the environment. A more detailed report is 
available (U.S. EPA 2014).

RefeRences

Abdo N, Wetmore BA, Chappell  GA, Shea D, 
Wright FA, Rusyn I. 2015a. In vitro screening for 
population variability in toxicity of pesticide-
containing mixtures. Environ Int 85:147–155.

Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru 
S, et al. 2015b. Population-based in vitro hazard and 
concentration–response assessment of chemicals: 
the 1000 Genomes high throughput screening study. 
Environ Health Perspect 123:458–466, doi: 10.1289/
ehp.1408775.

Adeleye Y, Andersen M, Clewell R, Davies M, Dent M, 
Edwards S, et  al. 2015. Implementing Toxicity 
Testing in the 21st Century (TT21C): making safety 
decisions using toxicity pathways, and progress in a 
prototype risk assessment. Toxicology 332:102–111.

Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, 
Hornung MW, Johnson RD, et al. 2010. Adverse 
outcome pathways: a conceptual framework to 
support ecotoxicology research and risk assess-
ment. Environ Toxicol Chem 29:730–741.

Ankley GT, Gray LE. 2013. Cross-species conserva-
tion of endocrine pathways: a critical analysis of 
Tier 1 fish and rat screening assays with 12 model 
chemicals. Environ Toxicol Chem 32:1084–1087.

Attene-Ramos MS, Huang R, Michael S, Witt KL, 
Richard A, Tice RR, et al. 2015. Profiling of the Tox21 
chemical collection for mitochondrial function to 

identify compounds that acutely decrease mito-
chondrial membrane potential. Environ Health 
Perspect 123:49–56, doi: 10.1289/ehp.1408642.

Attene-Ramos MS, Miller N, Huang R, Michael S, 
Itkin M, Kavlock RJ, et al. 2013. The Tox21 robotic 
platform for the assessment of environmental 
chemicals – from vision to reality. Drug Discov 
Today 18:716–723.

Audouze K, Brunak S, Grandjean P. 2013. A computa-
tional approach to chemical etiologies of diabetes. 
Sci Rep 3:2712, doi: 10.1038/srep02712.

Bell SM, Angrish MM, Wood CE, Edwards SW. 2016. 
Integrating publicly available data to generate 
computationally predicted adverse outcome 
pathways for fatty liver. Toxicol Sci 150:510–520.

Bell SM, Edwards SW. 2015. Identification and priori-
tization of relationships between environmental 
stressors and adverse human health impacts. 
Environ Health Perspect 123:1193–1199, doi: 10.1289/
ehp.1409138.

Bourdon-Lacombe JA, Moffat ID, Deveau M, Husain M, 
Auerbach S, Krewski D, et al. 2015. Technical guide 
for applications of gene expression profiling in 
human health risk assessment of environmental 
chemicals. Regul Toxicol Pharmacol 72(2):292–309.

Carter H, Hofree M, Ideker T. 2013. Genotype to pheno-
type via network analysis. Curr Opin Genet Dev 
23:611–621.

Casey W, Jacobs A, Maull E, Matheson J, Clarke C, 
Lowit A. 2015. A new path forward: the Interagency 
Coordinating Committee on the Validation of 
Alternative Methods (ICCVAM) and National 
Toxicology Program’s Interagency Center for the 
Evaluation of Alternative Toxicological Methods 
(NICEATM). J Am Assoc Lab Anim Sci 54(2):170–173.

Cho HY, Gladwell W, Yamamoto M, Kleeberger SR. 
2013. Exacerbated airway toxicity of environmental 
oxidant ozone in mice deficient in Nrf2. Oxid Med 
Cell Longev 2013:254069, doi: 10.1155/2013/254069.

Cote I, Anastas PT, Birnbaum LS, Clark RM, Dix DJ, 
Edwards SW, et al. 2012. Advancing the next gener-
ation of health risk assessment. Environ Health 
Perspect 120:1499–1502, doi: 10.1289/ehp.1104870.

Cox LA, Popken D, Marty MS, Rowlands JC, 
Patlewicz G, Goyak KO, et al. 2014. Developing 
scientific confidence in HTS-derived prediction 
models: lessons learned from an endocrine case 
study. Regul Toxicol Pharmacol 69:443–450.

Crawford-Brown D. 2013. The role of advanced biolog-
ical data in the rationality of risk-based regulatory 
decisions. J Environ Prot (Irvine, Calif) 4:238–249.

Crump KS, Hoel DG, Langley CH, Peto R. 1976. 
Fundamental carcinogenic processes and their 
implications for low dose risk assessment. Cancer 
Res 36(9 pt 1):2973–2979.

Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-
Richards C, Sciaky D, King BL, et al. 2015. The 
Comparative Toxicogenomics Database’s 10th 
year anniversary: update 2015. Nucleic Acids Res 
43(Database issue):D914–D920.

DeWoskin RS, Knudsen TB, Shah I. 2014. Virtual models 
(vM). In: Encyclopedia of Toxicology, Vol. 4 (Wexler 
P, ed). 3rd ed. London, UK:Elsevier, Inc., 948–957.

DHHS (U.S. Department of Health and Human 
Services). 2014. The Health Consequences of 
Smoking—50 years of Progress. Atlanta, GA:DHHS, 
Centers for Disease Control and Prevention, 
National Center for Chronic Disease Prevention 
and Health Promotion, Office on Smoking and 
Health. http://www.surgeongeneral.gov/library/
reports/50-years-of-progress/exec-summary.pdf 
[accessed 7 March 2016].

Diaz Ochoa JG, Bucher J,  Péry AR, Zaldivar 
Comenges  JM, Niklas J, Mauch K. 2013. A 

multi-scale modeling framework for individualized, 
spatiotemporal prediction of drug effects and toxi-
cological risk. Front Pharmacol 3:204, doi: 10.3389/
fphar.2012.00204.

Dimas AS, Lagou V, Barker A, Knowles JW, Mägi R, 
Hivert MF, et al. 2014. Impact of type 2 diabetes 
susceptibility variants on quantitative glycemic 
traits reveals mechanistic heterogeneity. Diabetes 
63:2158–2171.

Duncan KE, Dailey LA, Carson JL, Hernandez ML, 
Peden DB, Devlin R. 2012. Cultured basal airway 
epithelial cells from asthmatics display baseline 
gene expression profiles that differ from normal 
healthy cells and exhibit differential responses 
to ambient air pollution particles. Am J Respir 
Crit Care Med 185:A4291, doi: 10.1164/ajrccm-
conference.2012.185.1_MeetingAbstracts.A4291.

EC (European Commission). 2016. SEURAT-1: Towards 
the Replacement of in  Vivo Repeated Dose 
Systemic Toxicity Testing. http://www.seurat-1.eu 
[accessed 7 March 2016].

EC, JRC (European Commission, Joint Research 
Centre). 2015. EURL ECVAM Status Report on 
the Development, Validation and Regulatory 
Acceptance of  Al ternat ive Methods and 
Approaches (2015). http://bookshop.europa.eu/en/
eurl-ecvam-status-report-on-the-development-
val idat ion-and-regulatory-acceptance-of-
alternative-methods-and-approaches-2015--
pbLBNA27474/ [accessed 7 March 2016].

ECHA. (European Chemical Agency). 2016a. ECHA News: 
The QSAR Toolbox. https://echa.eurpoa.eu/support/
oecd-qsar-toolbox [accessed 7 September 2016].

ECHA. 2016b. OECD and EU Test Guidelines. http://
echa.europa.eu/support/oecd-eu-test-guidelines 
[accessed 10 March 2016].

Eduati F, Mangravite LM, Wang T, Tang H, Bare JC, 
Huang R, et al. 2015. Prediction of human popula-
tion responses to toxic compounds by a collabora-
tive competition. Nat Biotechnol 33(9):933–940.

Esposito S, Tenconi R, Lelii M, Preti V, Nazzari E, 
Consolo S, et al. 2014. Possible molecular mecha-
nisms linking air pollution and asthma in children. 
BMC Pulm Med 14:31, doi: 10.1186/1471-2466-14-31.

Freitas J, Miller N, Mengeling BJ, Xia M, Huang R, 
Houck K, et  al. 2014. Identification of thyroid 
hormone receptor active compounds using a 
quantitative high-throughput screening platform. 
Curr Chem Genomics Transl Med 8:36–46.

French JE, Gatti DM, Morgan DL, Kissling GE, 
Shockley KR, Knudsen GA, et al. 2015. Diversity 
outbred mice identify population-based exposure 
thresholds and genetic factors that influence 
benzene-induced genotoxicity. Environ Health 
Perspect 123:237–245, doi: 10.1289/ehp.1408202.

Friend S. 2013. Scientif ic opportunit ies from 
heterogeneous biological data analysis: overcoming 
complexity. Presentation. National Academy of 
Sciences Meeting: Integrating Environmental 
Health Data to Advance Discovery, 10–11 January 
2013, Washington, DC. https://www.youtube.
com/watch?v= qNcATDilfVo&index = 3&list = 
PLzsdEyVNFvgyizsegxlcIbLz1glyOIHxJ [accessed 
10 March 2016]. 

Garcia-Reyero N. 2015. Are adverse outcome pathways 
here to stay? Environ Sci Technol 49:3–9.

Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, 
He S, et al. 2010. The NCBI BioSystems database. 
Nucleic Acids Res 38(Database issue):D492–D496.

Ghantous A, Hernandez-Vargas H, Byrnes G, Dwyer T, 
Herceg Z. 2015. Characterising the epigenome as 
a key component of the fetal exposome in evalu-
ating in utero exposures and childhood cancer 
risk. Mutagenesis 30:733–742.



Cote et al.

1680 volume 124 | number 11 | November 2016 • Environmental Health Perspectives

Godderis L, Thomas R, Hubbard AE, Tabish AM, 
Hoet P, Zhang L, et al. 2012. Effect of chemical 
mutagens and carcinogens on gene expression 
profiles in human TK6 cells. PLoS One 7(6):e39205, 
doi: 10.1371/journal.pone.0039205.

Golbraikh A, Wang XS, Zhu H, Tropsha A. 2012. Predictive 
QSAR modeling: methods and applications in 
drug discovery and chemical risk assessment. In: 
Handbook of Computational Chemistry (Leszczynski 
J, ed). New York, NY:Springer, 1309–1342.

Goldsmith MR, Peterson SD, Chang DT, Transue TR, 
Tornero-Velez R, Tan YM, et al. 2012. Informing 
mechanistic toxicology with computational 
 molecular models. Methods Mol Biol 929:139–165.

Harrill AH, Ross PK, Gatti DM, Threadgill DW, Rusyn I. 
2009a. Population-based discovery of toxico-
genomics biomarkers for hepatotoxicity using 
a laboratory strain diversity panel. Toxicol Sci 
110(1):235–243.

Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, 
Stylianou IM, et  al. 2009b. Mouse population-
guided resequencing reveals that variants in CD44 
contribute to acetaminophen-induced liver injury 
in humans. Genome Res 19(9):1507–1515.

Hatch GE, Duncan KE, Diaz-Sanchez D, Schmitt MT, 
Ghio AJ, Carraway MS, et al. 2014. Progress in 
assessing air pollutant risks from in vitro expo-
sures: matching ozone dose and effect in human 
airway cells. Toxicol Sci 141:198–205.

Hatzimichael E, Crook T. 2013. Cancer epigenetics: 
new therapies and new challenges. J Drug Deliv 
2013:529312, doi: 10.1155/2013/529312.

Hood L, Tian Q. 2012. Systems approaches to biology 
and disease enable translational systems medicine. 
Genomics Proteomics Bioinformatics 10:181–185.

Hsu CW, Zhao J, Huang R, Hsieh JH, Hamm J, 
Chang X, et al. 2014. Quantitative high-throughput 
profiling of environmental chemicals and drugs 
that modulate farnesoid X receptor. Sci Rep 
4:6437, doi: 10.1038/srep06437.

Huang R, Sakamuru S, Martin MT, Reif DM, Judson RS, 
Houck KA, et al. 2014. Profiling of the Tox21 10K 
compound library for agonists and antagonists of 
the estrogen receptor alpha signaling pathway. Sci 
Rep 4:5664, doi: 10.1038/srep05664.

Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, 
Attene-Ramos M, et al. 2016. Modelling the Tox21 
10 K chemical profiles for in vivo toxicity prediction 
and mechanism characterization. Nat Commun 
7:10425, doi: 10.1038/ncomms10425.

Hubal EA. 2009. Biologically relevant exposure science 
for 21st century toxicity testing. Toxicol Sci 
111:226–232.

IARC (International Agency for Research on Cancer). 
2010. Some non-heterocyclic polycyclic aromatic 
hydrocarbons and some related exposures. IARC 
Monogr Eval Carcinog Risk Hum 92.

IARC. 2012. Benzene. IARC Monogr Eval Carcinog Risk 
Hum 100F:249–294.

Ideker T, Krogan NJ. 2012. Differential network biology. 
Mol Syst Biol 8:565, doi: 10.1038/msb.2011.99.

Inadera H. 2013. Developmental origins of obesity and 
type 2 diabetes: molecular aspects and role of 
chemicals. Environ Health Prev Med 18:185–197.

JRC (Joint Research Centre). 2016. Alternatives 
to Animal Testing and Safety Assessment of 
Chemicals. https://ec.europa.eu/jrc/en/research-
topic/alternatives-animal-testing-and-safety-
assessment-chemicals [accessed 2 September 
2016].

Judson R,  Houck K,  Mart in M, Knudsen TB, 
Thomas  RS, Sipes N, et  al. 2014. In  vitro and 
modelling approaches to risk assessment from 
the U.S. Environmental Protection Agency 

ToxCast programme. Basic Clin Pharmacol Toxicol 
115:69–76.

Judson R, Kavlock R, Martin M, Reif D, Houck K, 
Knudsen T, et al. 2013. Perspectives on validation 
of high-throughput assays supporting 21st century 
toxicity testing. ALTEX 30:51–66.

Judson RS, Kavlock RJ, Setzer RW, Hubal EA, 
Martin MT, Knudsen TB, et al. 2011. Estimating 
toxicity-related biological pathway altering doses 
for high-throughput chemical risk assessment. 
Chem Res Toxicol 24:451–462.

Judson RS, Magpantay FM, Chickarmane V, Haskell C, 
Tania N, Taylor J, et al. 2015. Integrated model of 
chemical perturbations of a biological pathway 
using 18 in vitro high-throughput screening assays 
for the estrogen receptor. Toxicol Sci 148(1):137–154.

Judson RS, Martin MT, Egeghy P, Gangwal S, 
Reif  DM, Kothiya P, et  al. 2012. Aggregating 
data for computational toxicology applications: 
the U.S. Environmental Protection Agency (EPA) 
Aggregated Computational Toxicology Resource 
(ACToR) system. Int J Mol Sci 13:1805–1831.

Judson RS,  Mart in MT, Reif  DM, Houck KA, 
Knudsen TB, Rotroff DM, et al. 2010. Analysis of 
eight oil spill dispersants using rapid, in vitro tests 
for endocrine and other biological activity. Environ 
Sci Technol 44(15):5979–5985.

Kasahara DI, Mathews JA, Park CY, Cho Y, Hunt G, 
Wurmbrand AP, et al. 2015. ROCK insufficiency 
attenuates ozone-induced airway hyperrespon-
siveness in mice. Am J Physiol Lung Cell Mol 
Physiol 309(7):L736–L746.

Kavlock R, Chandler K, Houck K, Hunter S, Judson R, 
Kleinstreuer N, et  al. 2012. Update on EPA’s 
ToxCast program: providing high throughput 
decision support tools for chemical risk manage-
ment. Chem Res Toxicol 25:1287–1302.

Kleinstreuer NC, Sullivan K, Allen D, Edwards  S, 
Mendrick DL, Embry M, et  al. 2016. Adverse 
outcome pathways: from research to regula-
tion scientific workshop report. Regul Toxicol 
Pharmacol 76:39–50.

Kleinstreuer NC, Yang J, Berg EL, Knudsen TB, 
Richard AM, Martin MT, et al. 2014. Phenotypic 
screening of the ToxCast chemical library to 
classify toxic and therapeutic mechanisms. Nat 
Biotechnol 32:583–591.

Knudsen TB, DeWoskin RS. 2011. Systems modeling 
in developmental toxicity. In: Handbook of 
Systems Toxicology (Casciano DA, Sahu SC, eds). 
Chichester, UK:John Wiley & Sons, Ltd., 599–617.

Knudsen TB, Keller DA, Sander M, Carney EW, 
Doerrer NG, Eaton DL, et al. 2015. FutureTox II: 
in vitro data and in silico models for predictive 
toxicology. Toxicol Sci 143(2):256–267.

Knudsen TB, Martin M, Chandler K, Kleinstreuer N, 
Judson R, Sipes N. 2013. Predictive models and 
computational toxicology. Methods Mol Biol 
947:343–374.

Krewski D, Westphal M, Al-Zoughool M, Croteau MC, 
Andersen ME. 2011. New directions in toxicity 
testing. Annu Rev Public Health 32:161–178.

Krewski D, Westphal M, Andersen ME, Paoli GM, 
Chiu WA, Al-Zoughool M, et al. 2014. A framework 
for the next generation of risk science. Environ 
Health Perspect 122:796–805, doi: 10.1289/
ehp.1307260.

LaLone CA, Berninger JP, Villeneuve DL, Ankley GT. 
2014. Leveraging existing data for prioritization of 
the ecological risks of human and veterinary phar-
maceuticals to aquatic organisms. Philos Trans 
R Soc Lond B Biol Sci 369:20140022, doi: 10.1098/
rstb.2014.0022.

Langley G, Austin CP, Balapure AK, Birnbaum  LS, 

Bucher JR, Fentem J, et al. 2015. Lessons from 
toxicology: developing a 21st-century paradigm 
for medical research. Environ Health Perspect 
123:A268–A272, doi: 10.1289/ehp.1510345.

Lock EF, Abdo N, Huang R, Xia M, Kosyk O, O’Shea SH, 
et al. 2012. Quantitative high-throughput screening 
for chemical toxicity in a population-based in vitro 
model. Toxicol Sci 126:578–588.

Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, 
Tropsha A, Varnek A, et al. 2016. CERAPP: collab-
orative estrogen receptor activity prediction 
project. Environ Health Perspect 124(7):1023–1033, 
doi: 10.1289/ehp.1510267.

Mattes W, Yang X, Orr MS, Richter P, Mendrick DL. 
2014. Biomarkers of tobacco smoke exposure. Adv 
Clin Chem 67:1–45.

McConnell ER, Bell SM, Cote I, Wang RL, Perkins EJ, 
Garcia-Reyero N, et al. 2014. Systematic Omics 
Analysis Review (SOAR) tool to support risk 
assessment. PloS One 9:e110379, doi: 10.1371/
journal.pone.0110379.

McCullough SD, Bowers EC, On DM, Morgan  DS, 
Dailey LA, Hines RN, et al. 2016. Baseline chro-
matin modification levels may predict inter-
individual variability in ozone-induced gene 
expression. Toxicol Sci 150(1):216–224.

McCullough SD, Duncan KE, Swanton SM, Dailey LA, 
Diaz-Sanchez D, Devlin RB. 2014. Ozone induces a 
pro-inflammatory response in primary human bron-
chial epithelial cells through mitogen-activated 
protein kinase activation without nuclear factor-κB 
activation. Am J Respir Cell Mol Biol 51:426–435.

McHale CM, Smith MT, Zhang L. 2014. Application 
of toxicogenomic profiling to evaluate effects of 
benzene and formaldehyde: from yeast to human. 
Ann N Y Acad Sci 1310:74–83.

McHale CM, Zhang L, Lan Q, Vermeulen R, Li G, 
Hubbard AE, et  al. 2011. Global gene expres-
sion profiling of a population exposed to a range 
of benzene levels. Environ Health Perspect 
119:628–634, doi: 10.1289/ehp.1002546.

McHale CM, Zhang L, Smith MT. 2012. Current under-
standing of the mechanism of benzene-induced 
leukemia in humans: implications for risk assess-
ment. Carcinogenesis 33:240–252.

Mendrick DL. 2011. Transcriptional profiling to identify 
biomarkers of disease and drug response. 
Pharmacogenomics 12:235–249.

Mortensen HM, Euling SY. 2013. Integrating mechanistic 
and polymorphism data to characterize human 
genetic susceptibility for environmental chemical 
risk assessment in the 21st century. Toxicol Appl 
Pharmacol 271:395–404.

NAFTA (North American Free Trade Agreement, 
Technical Working Group on Pesticides). 2012. 
(Q)uantitative Structure Activity Relationship 
[(Q)SAR] Guidance Document. https://www.epa.
gov/sites/production/files/2016-01/documents/
qsar-guidance.pdf [accessed 21 September 2016].

NHGRI (National Human Genome Research Institute). 
2015. A Catalog of Published Genome-Wide 
Association Studies. http://www.genome.gov/
gwastudies/ [accessed 7 March 2016].

NIEHS (National Institute of Environmental Health 
Sciences).  2015. NIEHS Single Nucleotide 
Polymorphisms (SNPs) Environmental Genome 
Project. http://www.ncbi.nlm.nih.gov/guide/howto/
view-all-snps/ [accessed 2 September 2016].

Nishihara K, Huang R, Zhao J, Shahane SA, Witt KL, 
Smith-Roe SL, et al. 2016. Identification of genotoxic 
compounds using isogenic DNA repair deficient 
DT40 cell lines on a quantitative high throughput 
screening platform. Mutagenesis 31:69–81.

NRC (National Research Council). 2007. Toxicity Testing 



The Next Generation of Risk Assessment program summary

Environmental Health Perspectives • volume 124 | number 11 | November 2016 1681

in the 21st Century: A Vision and a Strategy. 
Washington, DC:National Academies Press.

NRC. 2009. Science and Decisions: Advancing Risk 
Assessment. Washington, DC:National Academies 
Press.

NRC. 2011. Predicting Later-Life Outcomes of Early-
Life Exposures [news story]. Standing Committee 
on Use of Emerging Science for Environmental 
Hea l th  Dec is ions  Newsle t ter .  Emerg ing 
Science for Environmental Health Decisions, 
Washington, DC; February 2011. http://nas-sites.
org/emergingscience/files/2011/05/inutero_final_
April2011.pdf [accessed 7 March 2016].

NRC. 2014. Review of EPA’s Integrated Risk Information 
System (IRIS) Process. Washington, DC:National 
Academies Press. http://www.nap.edu/catalog.
php?record_id=18764 [accessed 7 March 2016].

OECD (Organization for Economic Cooperation and 
Development). 2013. Guidance Document on 
Developing and Assessing Adverse Outcome 
Pathways. Series on Testing and Assessment, 
No. 184. ENV/JM/MONO(2013)6. Available: 
http: / /search.oecd.org/off ic ialdocuments/
d i s p l a y d o c u m e n t p d f / ? c o t e = e n v / j m /
mono%282013%296&doclanguage=en [accessed 
7 March 2016].

OECD. 2016a. OECD QSAR Toolbox. Version 3.0. http://
www.oecd.org/chemicalsafety/risk-assessment/
theoecdqsartoolbox.htm [accessed 2 September 
2016].

OECD. 2016b. Other Activities on Molecular Screening 
and Toxicogenomics. http://www.oecd.org/env/
ehs/testing/toxicogenomics.htm [accessed 7 March 
2016].

O’Shea SH, Schwarz J, Kosyk O, Ross PK, Ha MJ, 
Wright FA, et al. 2011. In vitro screening for popu-
lation variability in chemical toxicity. Toxicol Sci 
119:398–407.

Padilla S, Corum D, Padnos B, Hunter DL, Beam A, 
Houck KA, et al. 2012. Zebrafish developmental 
screening of the ToxCast™ Phase I chemical 
library. Reprod Toxicol 33:174–187.

Painter K, McConnell ER, Sahasrabudhe S, Burgoon L, 
Powers CM. 2014. What do the data show? 
Knowledge map development for comprehensive 
environmental assessment. Integr Environ Assess 
Manag 10:37–47.

Patel CJ, Chen R, Butte AJ. 2012. Data-driven integration 
of epidemiological and toxicological data to select 
candidate interacting genes and environmental 
factors in association with disease. Bioinformatics 
28:i121–i126.

Patel CJ, Chen R, Kodama K, Loannidis JP, Butte AJ. 
2013a. Systematic identification of interaction 
effects between genome- and environment-wide 
associations in type 2 diabetes mellitus. Hum Genet 
132:495–508.

Patel CJ, Sivadas A, Tabassum R, Preeprem T, Zhao J, 
Arafat D, et al. 2013b. Whole genome sequencing 
in support of wellness and health maintenance. 
Genome Med 5:58, doi: 10.1186/gm462.

Perkins EJ, Ankley GT, Crofton KM, Garcia-Reyero N, 
LaLone CA, Johnson MS, et  al. 2013. Current 
perspectives on the use of alternative species in 
human health and ecological risk assessments. 
Environ Health Perspect 121:1002–1010, doi: 
10.1289/ehp.1306638.

Politi R, Rusyn I, Tropsha A. 2014. Prediction of binding 
affinity and efficacy of thyroid hormone receptor 
ligands using QSAR and structure-based modeling 
methods. Toxicol Appl Pharmacol 280:177–189.

Rotroff  DM, Dix DJ,  Houck KA,  Kavlock RJ, 
Knudsen TB, Martin MT, et al. 2013. Real-time 
growth kinetics measuring hormone mimicry for 

ToxCast chemicals in T-47D human ductal carci-
noma cells. Chem Res Toxicol 26:1097–1107.

Rotroff DM, Wetmore BA, Dix DJ, Ferguson SS, 
Clewell HJ, Houck KA, et al. 2010. Incorporating 
human dosimetry and exposure into high-
throughput in vitro toxicity screening. Toxicol Sci 
117:348–358.

Rusyn I, Sedykh A, Low Y, Guyton KZ, Tropsha A. 2012. 
Predictive modeling of chemical hazard by inte-
grating numerical descriptors of chemical struc-
tures and short-term toxicity assay data. Toxicol 
Sci 127:1–9.

Ryan KR, Sirenko O, Parham F, Hsieh JH, Cromwell EF, 
Tice RR, et al. 2016. Neurite outgrowth in human 
induced pluripotent stem cell-derived neurons 
as a high-throughput screen for developmental 
neurotoxicity or neurotoxicity. Neurotoxicology 
53:271–281.

Schadt EE, Björkegren JL. 2012. NEW: network-
enabled wisdom in biology, medicine, and health 
care. Sci Transl Med 4(115):115rv1, doi: 10.1126/
scitranslmed.3002132.

Settivari RS, Ball N, Murphy L, Rasoulpour R, 
Boverhof  DR, Carney EW. 2015. Predicting the 
future: opportunities and challenges for the 
chemical industry to apply 21st-century toxicity 
testing. J Am Assoc Lab Anim Sci 54(2):214–223.

Shah I, Wambaugh J. 2010. Virtual tissues in toxi-
cology. J Toxicol Environ Health B Crit Rev 
13:314–328.

Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, 
Richard AM, et  al. 2013. Profiling 976 ToxCast 
chemicals across 331 enzymatic and receptor 
signaling assays. Chem Res Toxicol 26:878–895.

Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson 
RS, Singh AV, et al. 2011a. Predictive models of 
prenatal developmental toxicity from ToxCast high-
throughput screening data. Toxicol Sci 124:109–127.

Sipes NS, Padilla S, Knudsen TB. 2011b. Zebrafish: 
as an integrative model for twenty-first century 
toxicity testing. Birth Defects Res C Embryo Today 
93:256–267.

Smith MT. 2010. Advances in understanding benzene 
health effects and susceptibility. Annu Rev Public 
Health 31:133–148.

Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, 
Rusyn I, et al. 2016. Key characteristics of carcino-
gens as a basis for organizing data on mecha-
nisms of carcinogenesis. Environ Health Perspect 
124:713–721, doi: 10.1289/ehp.1509912.

Smith MT, Zhang L,  McHale CM, Skibola CF, 
Rappaport SM. 2011. Benzene, the exposome and 
future investigations of leukemia etiology. Chem 
Biol Interact 192:155–159.

Thayer KA, Heindel JJ, Bucher JR, Gallo MA. 2012. 
Role of environmental chemicals in diabetes and 
obesity: a National Toxicology Program workshop 
review. Environ Health Perspect 120:779–789, doi: 
10.1289/ehp.1104597.

Thienpont B, Tingaud-Sequeira A, Prats E, Barata C, 
Babin PJ, Raldúa D. 2011. Zebrafish eleuthero-
embryos provide a suitable vertebrate model for 
screening chemicals that impair thyroid hormone 
synthesis. Environ Sci Technol 45:7525–7532.

Thomas R, Hubbard AE, McHale CM, Zhang  L, 
Rappaport SM, Lan Q, et al. 2014. Characterization 
of changes in gene expression and biochemical 
pathways at low levels of benzene exposure. PloS 
One 9:e91828, doi: 10.1371/journal.pone.0091828.

Thomas R, McHale CM, Lan Q, Hubbard AE, Zhang L, 
Vermeulen R, et al. 2013. Global gene expression 
response of a population exposed to benzene: a 
pilot study exploring the use of RNA-sequencing 
technology. Environ Mol Mutagen 54:566–573.

Thomas R, Phuong J, McHale CM, Zhang L. 2012. 
Using bioinformatic approaches to identify 
pathways targeted by human leukemogens. Int J 
Environ Res Public Health 9:2479–2503.

Thomas RS, Black MB, Li L, Healy E, Chu TM, Bao W, 
et al. 2012a. A comprehensive statistical analysis 
of predicting in vivo hazard using high-throughput 
in vitro screening. Toxicol Sci 128(2):398–417.

Thomas RS, Clewell HJ III, Allen BC, Wesselkamper SC, 
Wang NC, Lambert JC, et al. 2011. Application of 
transcriptional benchmark dose values in quan-
titative cancer and noncancer risk assessment. 
Toxicol Sci 120:194–205.

Thomas RS, Clewell HJ III, Allen BC, Yang L, Healy E, 
Andersen ME. 2012b. Integrating pathway-based 
transcriptomic data into quantitative chemical risk 
assessment: a five chemical case study. Mutat 
Res 746:135–143.

Thomas RS, Himmelstein MW, Clewell HJ III, Yang Y, 
Healy E, Black MB, et al. 2013a. Cross-species 
transcriptomic analysis of mouse and rat lung 
exposed to chloroprene. Toxicol Sci 131:629–640.

Thomas RS, Philbert MA, Auerbach SS, Wetmore BA, 
DeVito MJ, Cote I, et al. 2013b. Incorporating new 
technologies into toxicity testing and risk assess-
ment: moving from 21st century vision to a data-
driven framework. Toxicol Sci 136:4–18.

Thomas RS, Wesselkamper SC, Wang NC, Zhao QJ, 
Petersen DD, Lambert JC, et al. 2013c. Temporal 
concordance between apical and transcriptional 
points of departure for chemical risk assessment. 
Toxicol Sci 134:180–194.

Tice RR, Austin CP, Kavlock RJ, Bucher JR. 2013. 
Improving the human hazard characterization 
of chemicals: a Tox21 update. Environ Health 
Perspect 121:756–765, doi: 10.1289/ehp.1205784.

Tollefsen KE, Scholz S, Cronin MT, Edwards SW, de 
Knecht J, Crofton K, et al. 2014. Applying Adverse 
Outcome Pathways (AOPs) to support Integrated 
Approaches to Testing and Assessment (IATA). 
Regul Toxicol Pharmacol 70:629–640.

U.S. EPA (U.S. Environmental Protection Agency). 
2011a. Advancing the Next Generation (NexGen) 
of Risk Assessment: The Prototypes Workshop. 
1–3 November 2010, Research Triangle Park, 
North Carolina. EPA/600/R-11/100. Washington, 
DC:U.S. EPA. http://nepis.epa.gov/Exe/ZyNET.exe/
P100CB09.TXT?ZyActionD=ZyDocument&Client=
EPA&Index=2011+Thru+2015&Docs=&Query=&T
ime=&EndTime=&SearchMethod=1&TocRestrict
=n&Toc=&TocEntry=&QField=&QFieldYear=&QFi
eldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFie
ldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CI
ndex%20Data%5C11thru15%5CTxt%5C00000000%
5CP100CB09.txt&User=ANONYMOUS&Password
=anonymous&SortMethod=h%7C-&MaximumDoc
uments=1&FuzzyDegree=0&ImageQuality=r75g8/
r75g8/x150y150g16/i425&Display=p%7Cf&DefSee
kPage=x&SearchBack=ZyActionL&Back=ZyActio
nS&BackDesc=Results%20page&MaximumPage
s=1&ZyEntry=1&SeekPage=x&ZyPURL [accessed 
7 September 2016].

U.S. EPA. 2011b. Advancing the Next Generation 
(NexGen) of Risk Assessment: Public Dialogue 
Conference. Summary Report. EPA/600/R-11/101. 
Washington, DC:U.S. EPA. https://archive.epa.
gov/risk/nexgen/web/pdf/nexgen-public-conf-
summary.pdf [accessed 7 March 2016].

U.S. EPA. 2011c. Endocrine Disrupter Sceening 
Program for the 21st Century: (EDSP21 Work 
Plan). The Incorporation of In Silico Models and 
In vitro High Throughput Assays in the Endocrine 
Disruptor  Screening Program (EDSP) for 
Prioritization and Screening. Summary Overview. 



Cote et al.

1682 volume 124 | number 11 | November 2016 • Environmental Health Perspectives

Washington, DC:U.S. EPA. http://www.epa.gov/
si tes/production/f i les/2015-07/documents/
edsp21_work_plan_summary_overview_final.pdf 
[accessed 7 March 2016].

U.S. EPA. 2011d. Use of “Omic” Technology to Inform 
the Risk Assessment Support Document for Case 
Study: Propiconazole. Appendix A & B. Washington, 
DC:U.S. EPA. https://www.regulations.gov/
contentStreamer?documentId=EPA-HQ-OPP-2011-
0284-0003&disposition=attachment&contentType
=pdf [accessed 2 September 2016]. 

U.S. EPA. 2013a. Final Report: Integrated Science 
Assessment of Ozone and Related Photochemical 
Oxidants. EPA/600/R-10/076. Washington, DC:U.S. 
EPA. http://cfpub.epa.gov/ncea/isa/recordisplay.
cfm?deid=247492 [accessed 7 March 2016].

U.S. EPA. 2013b. IRIS Toxicological Review of Benzo[a]
pyrene (Public Comment Draft). Washington, 
DC:U.S. EPA. http://cfpub.epa.gov/ncea/iris_drafts/
recordisplay.cfm?deid=66193 [accessed 7 March 
2016].

U.S. EPA. 2014. Next Generation Risk Assessment: 
Incorporation of Recent Advances in Molecular, 
Computational, and Systems Biology (Final 
Report). EPA/600/R-14/004. Washington, DC:U.S. 
EPA. http://cfpub.epa.gov/ncea/risk/recordisplay.
cfm?deid=286690 [accessed 7 March 2016].

U.S. EPA. 2015a. Chemical Safety for Sustainability: 
Strategic Research Action Plan 2016-2019. EPA 
601/K-15/003. https://www.epa.gov/research/
chemical-safety-sustainability-strategic-research-
action-plan-2016-2019 [accessed 2 September 
2016].

U.S. EPA. 2015b. Human Health Risk Assessment: 
Strategic Research Action Plan 2016-2019. EPA 
601/K-15/002. https://www.epa.gov/research/
human-health-risk-assessment-strategic-research-
action-plan-2016-2019 [accessed 2 September 
2016].

U.S. EPA. 2015c. TSCA Chemical Substance Inventory. 

http://www.epa.gov/oppt/existingchemicals/pubs/
tscainventory/basic.html#background [accessed 
2 September 2016].

U.S. EPA. 2016. Science in Action. Innovative Research 
for a Sustainable Future. Computational Toxicology 
Research [fact sheet]. https://www.epa.gov/sites/
production/files/2016-03/documents/comptox_
factsheet_mar2016.pdf [accessed 2 September 2016].

Venkatapathy R, Wang NC. 2013. Developmental 
toxicity prediction. Methods Mol Biol 930:305–340.

Vermeulen R, Li G, Lan Q, Dosemeci M, Rappaport SM, 
Bohong X, et al. 2004. Detailed exposure assess-
ment for a molecular epidemiology study of 
benzene in two shoe factories in China. Ann 
Occup Hyg 48:105–116.

Villeneuve D, Volz DC, Embry MR, Ankley GT, 
Belanger SE, Léonard M, et al. 2014. Investigating 
alternatives to the fish early-life stage test: a 
strategy for discovering and annotating adverse 
outcome pathways for early fish development. 
Environ Toxicol Chem 33:158–169.

Vinken M. 2013. The adverse outcome pathway 
concept: a pragmatic tool in toxicology. Toxicology 
312:158–165.

Wambaugh JF, Wetmore BA, Pearce R, Strope C, 
Goldsmith R, Sluka JP, et al. 2015. Toxicokinetic 
triage for environmental chemicals. Toxicol Sci 
147(1):55–67.

Wang NC, Jay Zhao Q, Wesselkamper SC, Lambert JC, 
Petersen D, Hess-Wilson JK. 2012a. Application of 
computational toxicological approaches in human 
health risk assessment. I. A tiered surrogate 
approach. Regul Toxicol Pharmacol 63:10–19.

Wang NC, Rice GE, Teuschler LK, Colman J, Yang RS. 
2012b. An in  silico approach for evaluating a 
 fraction-based, risk assessment method for 
total petroleum hydrocarbon mixtures. J Toxicol 
2012:410143, doi: 10.1155/2012/410143.

W a n g  N C ,  V e n k a t a p a t h y  R ,  B r u c e  R M , 
Moudgal  C. 2011. Development of quantitative 

structure-activity relationship (QSAR) models 
to predict the carcinogenic potency of chemi-
cals. II. Using oral slope factor as a measure of 
carcinogenic potency. Regul Toxicol Pharmacol 
59:215–226.

Weiss JN, Karma A, MacLellan WR, Deng M, Rau CD, 
Rees CM, et al. 2012. “Good enough solutions” 
and the genetics of complex diseases. Circ Res 
111:493–504.

Wetmore BA, Wambaugh JF, Ferguson SS, Li L, 
Clewell HJ III, Judson RS, et al. 2013. Relative 
impact of incorporating pharmacokinetics on 
predicting in vivo hazard and mode of action from 
high-throughput in vitro toxicity assays. Toxicol 
Sci 132:327–346.

Wetmore  BA,  Wambaugh JF ,  Ferguson SS, 
Sochaski MA, Rotroff DM, Freeman K, et al. 2012. 
Integration of dosimetry, exposure, and high-
throughput screening data in chemical toxicity 
assessment. Toxicol Sci 125:157–174.

Wu W, Wages PA, Devlin RB, Diaz-Sanchez D, 
Peden DB, Samet JM. 2015. SRC-mediated EGF 
receptor activation regulates ozone-induced inter-
leukin 8 expression in human bronchial epithelial 
cells. Environ Health Perspect 123:231–236, doi: 
10.1289/ehp.1307379.

Wright FA, Shabalin AA, Rusyn I. 2012. Computational 
tools for discovery and interpretation of expres-
sion quantitative trait loci. Pharmacogenomics 
13:343–352.

Zhang L, McHale CM, Greene N, Snyder RD, Rich IN, 
Aardema MJ, et al. 2014. Emerging approaches 
in predictive toxicology. Environ Mol Mutagen 
55(9):679–688.

Zeise L, Bois FY, Chiu WA, Hattis D, Rusyn I, Guyton KZ. 
2013. Addressing human variability in next-
generation human health risk assessments of 
environmental chemicals. Environ Health Perspect 
121:23–31, doi: 10.1289/ehp.1205687.


