M. J. Rosen and J. T. Kunjappu, Surfactants and Interfacial Phenomena, 2012.

C. C. Ruiz, Sugar-Based Surfactants: Fundamentals and Applications, 2009.

M. Kjellin and I. Johansson, , 2010.

K. Hill, Surfactants Based on Carbohydrates and Proteins for Consumer Products and Technical Applications, Surfactants from Renewable Resources, pp.63-84, 2010.

O. Obrezanova, G. Csányi, J. M. Gola, and M. D. Segall, Gaussian Processes:?? A Method for Automatic QSAR Modeling of ADME Properties, Journal of Chemical Information and Modeling, vol.47, issue.5, pp.47-1847, 2007.
DOI : 10.1021/ci7000633

R. A. Lee and J. Lavoie, From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity, Animal Frontiers, vol.48, issue.1, pp.6-11, 2013.
DOI : 10.1016/j.apcata.2007.07.007

R. Nagarajan and E. Ruckenstein, Theory of surfactant self-assembly: a predictive molecular thermodynamic approach, Langmuir, vol.7, issue.12, pp.2934-2969, 1991.
DOI : 10.1021/la00060a012

S. Puvvada and D. Blankschtein, Molecular???thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants, The Journal of Chemical Physics, vol.74, issue.6, pp.92-3710, 1990.
DOI : 10.1103/PhysRevLett.60.1852

A. Vishnyakov, M. Lee, and A. V. Neimark, Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations, The Journal of Physical Chemistry Letters, vol.4, issue.5, pp.4-2013
DOI : 10.1021/jz400066k

J. Hu, A Review on Progress in QSPR Studies for Surfactants, International Journal of Molecular Sciences, vol.93, issue.3, pp.1020-1047, 2010.
DOI : 10.1021/cr00023a001

R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, 2009.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson et al., Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction, Chemical Reviews, vol.110, issue.10, pp.110-5714, 2010.
DOI : 10.1021/cr900238d

J. C. Dearden, P. Rotureau, and G. Fayet, QSPR prediction of physico-chemical properties for REACH, SAR and QSAR in Environmental Research, vol.1, issue.4, pp.279-318, 2013.
DOI : 10.1016/j.chemosphere.2006.09.049

URL : https://hal.archives-ouvertes.fr/ineris-00971003

R. Behjatmanesh, ?. Ardakani, S. M. Mirhosseini, and F. G. Abadi, Predicting Critical Micelle Concentration by Using Stepwise ? MLR and PLS as a Variable Selection Mix Method, MATCH Commun. Math. Comput. Chem, pp.71-305, 2014.

Z. Mosapour-kotena, R. Behjatmanesh-ardakani, R. Hashim, and V. Manickam-achari, Hydrogen bonds in galactopyranoside and glucopyranoside: a density functional theory study, Journal of Molecular Modeling, vol.58, issue.4, pp.589-599, 2013.
DOI : 10.1366/0003702042336136

Z. Mosapour-kotena, R. Behjatmanesh, ?. Ardakani, and R. Hashim, -mannopyranoside): a density functional theory study, Liquid Crystals, vol.110, issue.8, pp.41-784, 2014.
DOI : 10.1016/0009-2614(92)85247-8

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

V. Scalmani, B. Barone, G. A. Mennucci, H. Petersson, M. Nakatsuji et al.,

M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao et al.,

F. Peralta, M. Ogliaro, J. J. Bearpark, E. Heyd, K. N. Brothers et al.,

V. G. Morokuma, G. A. Zakrzewski, P. Voth, J. J. Salvador, S. Dannenberg et al., , 2009.

E. V. Anslyn and D. A. Dougherty, , 2006.

H. Van-koningsveld, J. C. Jansen, and A. J. Straathof, Structure of Anhydrous

. Glucopyranoside, A Comparison with its Hemi-and Monohydrate, Acta Cryst, vol.44, pp.1054-1057, 1988.

J. C. Corchado, M. L. Sánchez, and M. A. Aguilar, -Glucopyranose in Gas Phase and Aqueous Solution, Journal of the American Chemical Society, vol.126, issue.23, pp.126-7311, 2004.
DOI : 10.1021/ja0398767

G. I. Csonka, K. Éliás, and I. G. Csizmadia, Relative stability of 1C4 and 4C1 chair forms of ?-dglucose: a density functional study, Chem. Phys. Lett, pp.257-306, 1996.

N. Miura, T. Taniguchi, K. Monde, and S. Nishimura, A theoretical study of ?-and ?-dglucopyranose conformations by the density functional theory, Chem. Phys. Lett, pp.419-326, 2006.

A. J. Kumpulainen, E. C. Tyrode, and J. C. Eriksson, Soluble Monolayers of Sugar-Based Surfactants at the Air?Solution Interface, Sugar-Based Surfactants, pp.153-206, 2009.

A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena, The Journal of Physical Chemistry, vol.99, issue.7, pp.2224-2235, 1995.
DOI : 10.1021/j100007a062

C. L. Stone, The Basics of Biology, 2004.

S. L. Price, Predicting crystal structures of organic compounds, Chem. Soc. Rev., vol.19, issue.7, pp.2098-2111, 2014.
DOI : 10.1002/chem.201204369

M. Appell, G. Strati, J. L. Willett, and F. A. Momany, B3LYP/6-311++G** study of ?-and ?-dglucopyranose and 1,5-anhydro-d-glucitol: 4C1 and 1C4 chairs, 3,OB and B3,O boats, and skew-boat conformations, Carbohydr. Res, pp.339-537, 2004.

J. P. Foster and F. Weinhold, Natural hybrid orbitals, Journal of the American Chemical Society, vol.102, issue.24, pp.7211-7218, 1980.
DOI : 10.1021/ja00544a007

C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2004.

A. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.28, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevB.28.1809

K. Hill and C. , LeHen-Ferrenbach, 1. Sugar-Based Surfactants for Consumer Products and Technical Applications Sugar-Based Surfactants: Fundamentals and Applications, 2009.

P. Vollhardt and N. Schore, Organic Chemistry, 2011.

F. V. Silva, M. Goulart, J. Justino, A. Neves, and F. ,

E. Sacoto, M. Barbosa, A. P. Santos, and . Rauter, Alkyl deoxy-arabino-hexopyranosides: Synthesis, surface properties, and biological activities, Bioorg. Med. Chem, pp.16-4083, 2008.

Y. Nishida, H. Hori, H. Ohrui, and H. Meguro, H NMR Analyses of Rotameric Distribution of C5-C6 bonds of D-Glucopyranoses in Solution, Journal of Carbohydrate Chemistry, vol.340, issue.1, pp.239-250, 1988.
DOI : 10.1021/ja00253a005

P. D. Huibers, Quantum-Chemical Calculations of the Charge Distribution in Ionic Surfactants, Langmuir, vol.15, issue.22, pp.15-7546, 1999.
DOI : 10.1021/la990367l

B. Minisini, S. Chavand, R. Barthelery, and F. Tsobnang, Calculations of the charge distribution in dodecyltrimethylammonium: a quantum chemical investigation, Journal of Molecular Modeling, vol.9, issue.6, pp.1085-1092, 2010.
DOI : 10.1063/1.2202330

URL : https://hal.archives-ouvertes.fr/hal-00568336

P. D. Huibers, V. S. Lobanov, A. R. Katritzky, D. O. Shah, and M. Karelson, Prediction of Critical Micelle Concentration Using a Quantitative Structure???Property Relationship Approach, Prediction of Critical Micelle Concentration Using a Quantitative Structure?Property Relationship Approach, pp.113-120, 1997.
DOI : 10.1006/jcis.1996.4680

N. Anoune, M. Nouiri, Y. Berrah, J. Gauvrit, and P. Lanteri, Critical micelle concentrations of different classes of surfactants: A quantitative structure property relationship study, Journal of Surfactants and Detergents, vol.2, issue.1, pp.45-53, 2002.
DOI : 10.1007/s11743-002-0204-2

M. Jalali-heravi and E. Konouz, Prediction of critical micelle concentration of some anionic surfactants using multiple regression techniques: A quantitative structure-activity relationship study, Journal of Surfactants and Detergents, vol.61, issue.Suppl. 23A, pp.47-52, 2000.
DOI : 10.1016/B978-0-444-89691-9.50005-6

X. Li, G. Zhang, J. Dong, X. Zhou, X. Yan et al., Estimation of critical micelle concentration of anionic surfactants with QSPR approach, Journal of Molecular Structure: THEOCHEM, vol.710, issue.1-3, pp.710-119, 2004.
DOI : 10.1016/j.theochem.2004.08.039

X. Li, G. Zhang, J. Dong, X. Zhou, X. Yan et al., Correlation of critical micelle concentration of sodium alkyl benzenesulfonates with molecular descriptors, Wuhan Univ, J. Nat. Sci, pp.11-409, 2006.

Z. Wang, G. Li, X. Zhang, R. Wang, and A. Lou, A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.197, issue.1-3, pp.197-234, 2002.
DOI : 10.1016/S0927-7757(01)00812-3

M. Jalali, ?. Heravi, and E. Konouz, Use of Quantitative Structure?Property Relationships in Predicting the Krafft Point of Anionic Surfactants, pp.410-417, 2002.

S. Gracin, T. Brinck, and Å. C. Rasmuson, Prediction of Solubility of Solid Organic Compounds in Solvents by UNIFAC, Industrial & Engineering Chemistry Research, vol.41, issue.20, pp.41-5114, 2002.
DOI : 10.1021/ie011014w

C. Lee, W. Yang, and R. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.37-785, 1988.
DOI : 10.1103/PhysRevA.20.397

S. F. Sousa, P. A. Fernandes, and M. J. Ramos, General Performance of Density Functionals, The Journal of Physical Chemistry A, vol.111, issue.42, pp.111-10439, 2007.
DOI : 10.1021/jp0734474

M. H. Abraham and J. C. Mcgowan, The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography, Chromatographia, vol.17, issue.4, pp.23-243, 1987.
DOI : 10.1002/recl.19560750208