, Commission Recommendation of, on the Definition of Nanomaterial, 2011.

. Available-online, commission- recommendation-on-the-definition-of-nanomater-18102011_en.pdf (accessed on 2). 2. Products of Nanotechnologies Adopted by the SCENIHR during the 28th Plenary Meeting of 19, Available, vol.online, 2009.

W. G. Kreyling, M. Semmler-behnke, and Q. Chaudhry, A complementary definition of nanomaterial, Nano Today, vol.5, issue.3, pp.165-168, 2010.
DOI : 10.1016/j.nantod.2010.03.004

M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet et al., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotechnology, vol.245, issue.10, pp.634-641, 2006.
DOI : 10.1038/nnano.2009.242

URL : https://hal.archives-ouvertes.fr/hal-00446833

J. Wu, L. Pei, S. Xuan, and Q. Yan, Particle size dependent rheological property in magnetic fluid, Journal of Magnetism and Magnetic Materials, vol.408, pp.18-25, 2016.
DOI : 10.1016/j.jmmm.2016.02.005

, Atmosphere, vol.2017, issue.8, pp.84-105

A. Gupta and H. Wiggers, Freestanding silicon quantum dots: origin of red and blue luminescence, Nanotechnology, vol.22, issue.5, p.55707, 2010.
DOI : 10.1088/0957-4484/22/5/055707

A. Manke, L. Wang, and Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity, BioMed Research International, vol.66, issue.20, 2013.
DOI : 10.1080/15287394.2011.615110

URL : http://downloads.hindawi.com/journals/bmri/2013/942916.pdf

K. L. Garner and A. A. Keller, Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies, Journal of Nanoparticle Research, vol.7, issue.9, pp.1-28, 2014.
DOI : 10.1371/journal.pone.0046286

M. Sajid, M. Ilyas, C. Basheer, M. Tariq, M. Daud et al., Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects, Environmental Science and Pollution Research, vol.6, issue.26, pp.4122-4143, 2015.
DOI : 10.1002/smll.201000989

M. Farré, J. Sanchís, and D. Barceló, Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment, TrAC Trends in Analytical Chemistry, vol.30, issue.3, pp.517-527, 2011.
DOI : 10.1016/j.trac.2010.11.014

F. Ministry, . Ecology, . Energy, and . Sea, Éléments Issus des Déclarations des Substances à l'État Nanoparticulaire Direction Générale de la Prévention des Risques, Service des Risques Sanitaires Liés à l'Environnement, des Déchets et des Pollutions Diffuses Available online: https, 2015.

T. Y. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environmental Pollution, vol.185, issue.185, pp.69-76
DOI : 10.1016/j.envpol.2013.10.004

M. Research, Available online: http://www.researchandmarkets.com/reports, 2016.

B. Nowack, C. Brouwer, R. E. Geertsma, E. H. Heugens, B. L. Ross et al., Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors, Nanotoxicology, vol.269, issue.6, pp.1152-1156, 2012.
DOI : 10.1016/j.tox.2009.12.012

B. Collin, M. Auffan, A. C. Johnson, I. Kaur, A. A. Keller et al., Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials, Environ. Sci.: Nano, vol.87, issue.242, pp.533-548, 2014.
DOI : 10.1007/s00204-013-1079-4

URL : https://hal.archives-ouvertes.fr/hal-01653669

T. Xia, N. Li, and A. Nel, Potential Health Impact of Nanoparticles, Annual Review of Public Health, vol.30, issue.1, pp.137-150, 2009.
DOI : 10.1146/annurev.publhealth.031308.100155

URL : https://www.annualreviews.org/doi/pdf/10.1146/annurev.publhealth.031308.100155

M. D. Montaño, G. V. Lowry, F. Der-kammer, J. Blue, and J. Ranville, Current status and future direction for examining engineered nanoparticles in natural systems, Environmental Chemistry, vol.11, issue.4, pp.351-366, 2014.
DOI : 10.1071/EN14037

T. A. Kuhlbusch, P. Quincey, G. W. Fuller, F. Kelly, I. Mudway et al., New Directions: The future of European urban air quality monitoring, Atmospheric Environment, vol.87, pp.258-260, 2014.
DOI : 10.1016/j.atmosenv.2014.01.012

URL : https://hal.archives-ouvertes.fr/ineris-01855500

L. C. Abbott and A. D. Maynard, Exposure assessment approaches for engineered nanomaterials. Risk Anal, pp.1634-1644, 2010.
DOI : 10.1111/j.1539-6924.2010.01446.x

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/79200/1/j.1539-6924.2010.01446.x.pdf

J. A. Meesters, K. Veltman, A. J. Hendriks, and D. Van-de-meent, Environmental exposure assessment of engineered nanoparticles: Why REACH needs adjustment, Integrated Environmental Assessment and Management, vol.401, issue.202, pp.15-26
DOI : 10.1007/s00216-011-5266-y

B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-urrea, C. Metcalfe et al., Potential scenarios for nanomaterial release and subsequent alteration in the environment, Environmental Toxicology and Chemistry, vol.7, issue.1, pp.31-50, 2012.
DOI : 10.1071/EN09115

URL : https://hal.archives-ouvertes.fr/hal-01426190

K. Matsumoto and H. Tanaka, Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium, Atmospheric Environment, vol.30, issue.4, pp.639-648, 1996.
DOI : 10.1016/1352-2310(95)00290-1

M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal-maso, A. Lauri et al., Formation and growth rates of ultrafine atmospheric particles: a review of observations, Journal of Aerosol Science, vol.35, issue.2, pp.143-176, 2004.
DOI : 10.1016/j.jaerosci.2003.10.003

M. I. Khoder, Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area, Chemosphere, vol.49, issue.6, pp.675-684, 2002.
DOI : 10.1016/S0045-6535(02)00391-0

A. C. Gutleb, S. Cambier, T. Fernandes, A. Georgantzopoulou, T. A. Kuhlbusch et al., Chapter 4: Environmental Fate and Effects of Nanomaterials in Aquatic Freshwater Environments, Nanomaterials?A Guide to Fabrication and Applications, 2015.

M. Baalousha, G. Cornelis, T. A. Kuhlbusch, I. Lynch, C. Nickel et al., Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends, Environmental Science: Nano, vol.4, issue.2, p.323, 2016.
DOI : 10.3390/nano4020372

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.40, issue.19, pp.1-17, 2013.
DOI : 10.1039/c0cs00176g

F. Gottschalk, C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack, Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment, International Journal of Environmental Research and Public Health, vol.7, issue.5, pp.5581-5602, 2015.
DOI : 10.1021/es502440s

N. C. Mueller and B. Nowack, Exposure Modeling of Engineered Nanoparticles in the Environment, Environmental Science & Technology, vol.42, issue.12, pp.4447-4453, 2008.
DOI : 10.1021/es7029637

S. Mahendra, H. Zhu, V. L. Colvin, and P. J. Alvarez, Quantum Dot Weathering Results in Microbial Toxicity, Environmental Science & Technology, vol.42, issue.24, pp.9424-9430, 2008.
DOI : 10.1021/es8023385

J. Fabrega, S. R. Fawcett, J. C. Renshaw, and J. R. Lead, Silver Nanoparticle Impact on Bacterial Growth: Effect of pH, Concentration, and Organic Matter, Environmental Science & Technology, vol.43, issue.19, pp.7285-7290, 2009.
DOI : 10.1021/es803259g

D. Li, D. Y. Lyon, Q. Li, and P. J. Alvarez, EFFECT OF SOIL SORPTION AND AQUATIC NATURAL ORGANIC MATTER ON THE ANTIBACTERIAL ACTIVITY OF A FULLERENE WATER SUSPENSION, Environmental Toxicology and Chemistry, vol.27, issue.9, pp.1888-1894, 2008.
DOI : 10.1897/07-548.1

Z. Tong, M. Bischoff, L. Nies, B. Applegate, and R. F. Turco, Impact of Fullerene (C60) on a Soil Microbial Community, Environmental Science & Technology, vol.41, issue.8, pp.2985-2991, 2007.
DOI : 10.1021/es061953l

R. Owen and R. Handy, Viewpoint: Formulating the problems for environmental risk assessment of nanomaterials, Environ. Sci. Technol, vol.41, pp.5582-5588, 2007.

M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, . Jr et al., Environmental Science & Technology, vol.43, issue.17, pp.6458-6462, 2009.
DOI : 10.1021/es803621k

A. J. Tiwari and L. C. Marr, The Role of Atmospheric Transformations in Determining Environmental Impacts of Carbonaceous Nanoparticles, Journal of Environment Quality, vol.39, issue.6, pp.1883-1895, 2010.
DOI : 10.2134/jeq2010.0050

E. S. Bernhardt, B. P. Colman, M. F. Hochella, B. J. Cardinale, R. M. Nisbet et al., An Ecological Perspective on Nanomaterial Impacts in the Environment, Journal of Environment Quality, vol.39, issue.6, pp.1954-1965, 2010.
DOI : 10.2134/jeq2009.0479

G. V. Lowry, K. B. Gregory, S. C. Apte, and J. R. Lead, Transformations of Nanomaterials in the Environment, Environmental Science & Technology, vol.46, issue.13, pp.6893-6899
DOI : 10.1021/es300839e

Y. Ding, T. Kuhlbusch, M. Tongeren, A. S. Jiménez, I. Tuinman et al., Airborne engineered nanomaterials in the workplace???a review of release and worker exposure during nanomaterial production and handling processes, Journal of Hazardous Materials, vol.322, pp.17-28, 2016.
DOI : 10.1016/j.jhazmat.2016.04.075

T. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, Nanoparticle exposure at nanotechnology workplaces: A review, Particle and Fibre Toxicology, vol.8, issue.1, 2011.
DOI : 10.1039/b303928p

URL : https://particleandfibretoxicology.biomedcentral.com/track/pdf/10.1186/1743-8977-8-22?site=particleandfibretoxicology.biomedcentral.com

D. Brouwer, Exposure to manufactured nanoparticles in different workplaces, Toxicology, vol.269, issue.2-3, pp.120-127, 2010.
DOI : 10.1016/j.tox.2009.11.017

A. Caballero-guzman and B. Nowack, A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling?, Environmental Pollution, vol.213, pp.502-517, 2016.
DOI : 10.1016/j.envpol.2016.02.028

, Nanoengineering?Global Approaches to Health and Safety Issues, 2015.

B. Nowack, N. C. Mueller, H. F. Krug, and P. Wick, How to consider engineered nanomaterials in major accident regulations?, Environmental Sciences Europe, vol.26, issue.1, pp.1-10
DOI : 10.1021/es903757q

URL : https://enveurope.springeropen.com/track/pdf/10.1186/2190-4715-26-2

F. Gottschalk and B. Nowack, The release of engineered nanomaterials to the environment, Journal of Environmental Monitoring, vol.158, issue.5, pp.1145-1155, 2011.
DOI : 10.1016/j.envpol.2010.06.009

M. Broomfield, S. Foss-hansen, and F. Pelsy, Support for 3rd, Regulatory Review on Nanomaterials: Project Report; European Commission; ENV.A, vol.3, 2015.

X. Cen and . Iso, Classification Index: T 16-101-8. AFNOR: Paris Available online: https, Nanotechnologies?Vocabulary?Part 8: Nanomanufacturing Processes, 2015.

A. Vignes, Panorama des Principaux Procédés de Production, Utilisation, Transformation de Nanomatériaux; Rapport DRA-14-133557-00736A; INERIS: Verneuil-en, 2013.

M. A. Virji and A. B. Stefaniak, A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures, Comprehesive Materials Processing, vol.8, pp.103-125, 2014.
DOI : 10.1016/B978-0-08-096532-1.00811-6

C. Geraci, D. Heidel, C. Sayes, L. Hodson, P. Schulte et al., Perspectives on the design of safer nanomaterials and manufacturing processes, Journal of Nanoparticle Research, vol.15, issue.295, pp.17-366, 2015.
DOI : 10.1016/j.jhazmat.2015.03.069

L. Gridelet, P. Delbecq, L. Hervé, P. Boissolle, D. Fleury et al., Proposal of a new risk assessment method for the handling of powders and nanomaterials, Industrial Health, vol.53, issue.1, pp.56-68, 2015.
DOI : 10.2486/indhealth.2014-0046

URL : https://hal.archives-ouvertes.fr/ineris-01862511

E. Report-for and M. Project, Managing Risks of Nanomaterials; Summary Report on Processes and Activities Related to NM Lifecycle within Small and Large Industries; Grant Agreement Number 263215 Available online: http://www.marina-fp7, 2017.

, Safe Work Australia; 978-0-642-32884-72009 Available online: https://www.safeworkaustralia.gov, Engineered Nanomaterials: Evidence on the Effectiveness of Workplace Controls to Prevent Exposure, 1702.

N. En, High Efficiency Air Filters (EPA, HEPA and ULPA)?Part 1: Classification, Performance Testing, Marking, Classification Index: X 44-014-1, AFNOR, Paris Available online: https://www.boutique.afnor.org/norme/nf-en-1822-1/filtres-a-air-a-haute-efficacite-epa-hepa- et-ulpa-partie-1-classification-essais-de-performance-et-marquage, p.157753, 1822.

K. W. Lee and B. Y. Liu, On the Minimum Efficiency and the Most Penetrating Particle Size for Fibrous Filters, Journal of the Air Pollution Control Association, vol.30, issue.4, pp.377-381, 1980.
DOI : 10.1080/00022470.1980.10464592

A. Podgórski, A. Ba?azy, and L. Gradon, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chemical Engineering Science, vol.61, issue.20, pp.61-6804, 2006.
DOI : 10.1016/j.ces.2006.07.022

A. M. Jones and R. M. Harrison, Emission of ultrafine particles from the incineration of municipal solid waste: A review, Atmospheric Environment, vol.140, pp.519-528, 2016.
DOI : 10.1016/j.atmosenv.2016.06.005

D. Hleis, I. Fernández-olmo, F. Ledoux, A. Kfoury, L. Courcot et al., Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant, Journal of Hazardous Materials, vol.250, issue.251, pp.250-251
DOI : 10.1016/j.jhazmat.2013.01.080

URL : https://hal.archives-ouvertes.fr/hal-00838886

E. Monfort, V. Sanfélix, I. Celades, S. Gomar, F. Martín et al., Diffuse PM10 emission factors associated with dust abatement technologies in the ceramic industry, Atmospheric Environment, vol.45, issue.39, pp.7286-7292, 2011.
DOI : 10.1016/j.atmosenv.2011.08.038

B. Nowack, R. M. David, H. Fissan, H. Morris, J. A. Shatkin et al., Potential release scenarios for carbon nanotubes used in composites, Environment International, vol.59, pp.1-11, 2013.
DOI : 10.1016/j.envint.2013.04.003

URL : https://doi.org/10.1016/j.envint.2013.04.003

, on Industrial Emissions (Integrated Pollution Prevention and Control) Official Journal of the European Union, 2010.

E. Pollutant, R. , and T. Register, Available online, 2017.

, Relatif à la Déclaration Annuelle des Substances à l'Etat Nanoparticulaire Pris en Application de l'Article, L., 523-4 du Code de l'Environnement Available online: https, Décret no 2012-232 du 17 Février 2012, 2012.

R. , Eléments Issus des Déclarations des Substances à L'état Nanoparticulaire, Déclarations des Substances à l'État Nanoparticulaire?Exercice 2015: Rapport D'étude. Ministère de l'Environnement, de l'Énergie et de la Mer, 2017.

C. Bressot, N. Manier, and C. Pagnoux, Aguerre-Chariol, O.; Morgeneyer, M. Environmental release of engineered nanomaterials from commercial tiles under standardized abrasion conditions, J. Hazard. Mater, vol.2017, issue.322, pp.276-283

W. Wohlleben, S. Brill, M. W. Meier, M. Mertler, G. Cox et al., On the Lifecycle of Nanocomposites: Comparing Released Fragments and their In-Vivo Hazards from Three Release Mechanisms and Four Nanocomposites, Small, vol.3, issue.16, pp.2384-2395, 2011.
DOI : 10.1038/nnano.2008.111

L. Reijnders, The release of TiO2 and SiO2 nanoparticles from nanocomposites, Polymer Degradation and Stability, vol.94, issue.5, pp.873-876, 2009.
DOI : 10.1016/j.polymdegradstab.2009.02.005

D. Göhler, M. Stintz, L. Hillemann, and M. Vorbau, Characterization of Nanoparticle Release from Surface Coatings by the Simulation of a Sanding Process, Annals of Occupational Hygiene, vol.36, issue.3, pp.615-624, 2010.
DOI : 10.1016/S1352-2310(02)00174-7

L. Bihan, O. Shandilya, N. Gheerardyn, L. Guillon, O. Dore et al., Investigation of the Release of Particles from a Nanocoated Product, Advances in Nanoparticles, vol.02, issue.01, pp.39-44, 2013.
DOI : 10.4236/anp.2013.21008

URL : https://hal.archives-ouvertes.fr/ineris-00961799

T. Kuhlbusch, H. Kaminski, W. Wohleben, T. Kuhlbusch, and J. Schnekenburger, Release from Composites by Mechanical and Thermal Treatment: Test Methods In Safety of Nanomaterials along Their Life Cycle, pp.247-276, 2015.

S. J. Froggett, S. F. Clancy, D. R. Boverhof, and R. A. Canady, A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Particle and Fibre Toxicology, vol.11, issue.1, p.17, 2014.
DOI : 10.1016/j.corsci.2010.06.027

W. Wohlleben, T. A. Kuhlbusch, J. Schnekenburger, and C. M. Lehr, Safety of Nanomaterials along Their Lifecycle: Release, Exposure, and Human Hazards, 2015.
DOI : 10.1201/b17774

A. L. Holder, E. P. Vejerano, X. Zhoub, and L. C. Marr, Nanomaterial disposal by incineration, Environ. Sci.: Processes Impacts, vol.7, issue.418, pp.1652-1664, 2013.
DOI : 10.1038/nnano.2012.64

G. Ounoughene, O. Le-bihan, C. Chivas-joly, C. Motzkus, C. Longuet et al., Behavior and Fate of Halloysite Nanotubes (HNTs) When Incinerating PA6/HNTs Nanocomposite, Environmental Science & Technology, vol.49, issue.9, pp.5450-5457, 2015.
DOI : 10.1021/es505674j

URL : https://hal.archives-ouvertes.fr/ineris-01855609

G. Ounoughene, O. Le-bihan, C. Chivas-joly, C. Longuet, C. Motzkus et al., Aerosol of silica nanoparticles generated during the combustion of a polysiloxane nanocomposite, Proceedings of the Aerosol Technology 2015 conference, pp.15-17, 2015.
URL : https://hal.archives-ouvertes.fr/ineris-01855061

M. A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-rivera et al., Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants, Environmental Science & Technology, vol.43, issue.17, pp.6757-6763, 2009.
DOI : 10.1021/es901102n

L. K. Limbach, R. Bereiter, E. Müller, R. Krebs, R. Gälli et al., Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency, Environmental Science & Technology, vol.42, issue.15, pp.5828-5833, 2008.
DOI : 10.1021/es800091f

P. Kumar, P. Fennell, and A. Robins, Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities, Journal of Nanoparticle Research, vol.30, issue.8, pp.1523-1530, 2010.
DOI : 10.1016/S0761-8425(09)74693-5

D. Hristozov, Malsch, I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health, pp.1161-1194, 2009.

W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 1999.

A. D. Maynard and E. D. Kuempel, Airborne Nanostructured Particles and Occupational Health, Journal of Nanoparticle Research, vol.53, issue.6, pp.587-614, 2005.
DOI : 10.1164/ajrccm/143.5_Pt_1.1134

J. T. Quik, M. C. Stuart, M. Wouterse, W. Peijnenburg, A. J. Hendriks et al., Natural colloids are the dominant factor in the sedimentation of nanoparticles, Environmental Toxicology and Chemistry, vol.86, issue.5, pp.31-1019, 2012.
DOI : 10.1016/j.aquatox.2007.11.019

P. Kulkarni, P. A. Baron, and K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, 2011.
DOI : 10.1002/9781118001684

M. Seipenbusch, A. Binder, and G. Kasper, Temporal Evolution of Nanoparticle Aerosols in Workplace Exposure, Ann. Occup. Hyg, vol.52, pp.707-716, 2008.

S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead et al., Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules, Science of The Total Environment, vol.402, issue.1, pp.51-61, 2008.
DOI : 10.1016/j.scitotenv.2008.04.023

D. P. Stankus, S. E. Lohse, J. E. Hutchison, and J. A. Nason, Interactions between Natural Organic Matter and Gold Nanoparticles Stabilized with Different Organic Capping Agents, Environmental Science & Technology, vol.45, issue.8, pp.3238-3244, 2010.
DOI : 10.1021/es102603p

E. R. Graber and Y. Rudich, Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmospheric Chemistry and Physics, vol.6, issue.3, pp.729-753, 2006.
DOI : 10.5194/acp-6-729-2006

URL : https://hal.archives-ouvertes.fr/hal-00295856

J. Lee and N. M. Donahue, Secondary Organic Aerosol Coating of Synthetic Metal???Oxide Nanoparticles, Environmental Science & Technology, vol.45, issue.11, pp.4689-4695, 2011.
DOI : 10.1021/es104147z

A. Kupc, O. Bischof, T. Tritscher, M. Beeston, T. Krinke et al., Laboratory Characterization of a New Nano-Water-Based CPC 3788 and Performance Comparison to an Ultrafine Butanol-Based CPC 3776, Aerosol Science and Technology, vol.46, issue.3, pp.183-191, 2013.
DOI : 10.1016/j.jaerosci.2006.05.001

C. Asbach, A. Meyer-plath, S. Clavaguera, M. Fierz, D. Dahmann et al., Available online, p.47, 2016.

J. G. Slowik, E. S. Cross, J. H. Han, J. Kolucki, P. Davidovits et al., Measurements of Morphology Changes of Fractal Soot Particles using Coating and Denuding Experiments: Implications for Optical Absorption and Atmospheric Lifetime, Aerosol Science and Technology, vol.135, issue.8, pp.734-750, 2007.
DOI : 10.1080/02786820500529406

E. Weingartner, H. Burtscher, and U. Baltensperger, Hygroscopic properties of carbon and diesel soot particles, Atmospheric Environment, vol.31, issue.15, pp.2311-2327, 1997.
DOI : 10.1016/S1352-2310(97)00023-X

P. Borm, F. C. Klaessig, T. D. Landry, B. Moudgil, J. Pauluhn et al., Research Strategies for Safety Evaluation of Nanomaterials, Part V: Role of Dissolution in Biological Fate and Effects of Nanoscale Particles, Toxicological Sciences, vol.90, issue.1, pp.23-32, 2006.
DOI : 10.1080/089583797198051

H. R. Pruppacher and R. Jaenicke, The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmospheric Research, vol.38, issue.1-4, pp.283-295, 1995.
DOI : 10.1016/0169-8095(94)00098-X

K. V. Desboeufs, R. Losno, and J. L. Colin, Factors influencing aerosol solubility during cloud processes, Atmospheric Environment, vol.35, issue.20, pp.3529-3537, 2001.
DOI : 10.1016/S1352-2310(00)00472-6

L. J. Spokes, T. D. Jickells, and B. Lim, Solubilisation of aerosol trace metals by cloud processing: A laboratory study, Geochimica et Cosmochimica Acta, vol.58, issue.15, pp.3281-3287, 1994.
DOI : 10.1016/0016-7037(94)90056-6

G. Kaptay, On the size and shape dependence of the solubility of nano-particles in solutions, International Journal of Pharmaceutics, vol.430, issue.1-2, pp.253-257
DOI : 10.1016/j.ijpharm.2012.03.038

A. Mihranyana and M. Strømme, Solubility of fractal nanoparticles, Surface Science, vol.601, issue.2, pp.315-319, 2007.
DOI : 10.1016/j.susc.2006.09.037

M. E. Quadros and L. C. Marr, Environmental and Human Health Risks of Aerosolized Silver Nanoparticles, Journal of the Air & Waste Management Association, vol.60, issue.7, pp.770-781, 2010.
DOI : 10.1080/08958370701874663

M. D. Mcmahon, R. Lopez, H. M. Meyer, L. C. Iii-;-feldman, R. F. Haglund et al., Rapid tarnishing of silver nanoparticles in ambient laboratory air, Applied Physics B, vol.108, issue.7, pp.915-921, 2005.
DOI : 10.1007/BF01828742

A. S. Adeleye, A. A. Keller, R. J. Miller, and H. S. Lenihan, Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products, Journal of Nanoparticle Research, vol.7, issue.9, pp.1-18, 2013.
DOI : 10.1371/journal.pone.0046286

T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert et al., Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties, ACS Nano, vol.2, issue.10, pp.2121-2134, 2008.
DOI : 10.1021/nn800511k

K. Kadish and R. Ruoff, Fullerenes: Chemistry, Physics, and Technology Available online: https://books.google.de/books?hl=de&lr=&id=SQRugQM4p9QC&oi=fnd&pg= PR7&dq=Kadish, pp.5-7, 2000.

K. E. Geckeler and T. Premkumar, Carbon nanotubes: are they dispersed or dissolved in liquids?, Nanoscale Research Letters, vol.6, issue.1, pp.1-3, 2011.
DOI : 10.1186/1556-276X-6-136

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1186/1556-276X-6-136?site=nanoscalereslett.springeropen.com

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, and R. D. Handy,

M. J. Mclaughlin and J. Lead, Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem, vol.27, pp.1825-1851, 2008.

J. H. Seinfeld and S. N. Pandis, Physics Today, vol.51, issue.10, 2012.
DOI : 10.1063/1.882420

T. Hussein, A. Hru?ka, P. Dohányosová, L. D?umbová, J. Hemerka et al., Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber, Atmospheric Environment, vol.43, issue.4, pp.905-914, 2009.
DOI : 10.1016/j.atmosenv.2008.10.059

Y. Zhao, F. Wang, and J. Zhao, Size-Resolved Ultrafine Particle Deposition and Brownian Coagulation from Gasoline Vehicle Exhaust in an Environmental Test Chamber, Environmental Science & Technology, vol.49, issue.20, pp.12153-12160, 2015.
DOI : 10.1021/acs.est.5b02455

G. V. Lowry, E. M. Hotze, E. S. Bernhardt, D. D. Dionysiou, J. A. Pedersen et al., Environmental Occurrences, Behavior, Fate, and Ecological Effects of Nanomaterials: An Introduction to the Special Series, Journal of Environment Quality, vol.39, issue.6, pp.1867-1874, 2010.
DOI : 10.2134/jeq2010.0297

D. Lin, X. Tian, F. Wu, and B. Xing, Fate and Transport of Engineered Nanomaterials in the Environment, Journal of Environment Quality, vol.39, issue.6, pp.1896-1908, 2010.
DOI : 10.2134/jeq2009.0423

B. Zuberi, K. S. Johnson, G. K. Aleks, L. T. Molina, M. J. Molina et al., Hydrophilic properties of aged soot, Geophysical Research Letters, vol.31, issue.1, pp.32-01807, 2005.
DOI : 10.1111/j.1600-0889.1984.tb00254.x

B. J. Majestic, G. B. Erdakos, M. Lewandowsky, K. D. Oliver, R. D. Willis et al., A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis, International Journal of Occupational and Environmental Health, vol.16, issue.4, pp.488-507, 2010.
DOI : 10.1179/oeh.2010.16.4.488

C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, and . Jr, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environmental Science & Technology, vol.46, issue.13, pp.6900-6914, 2012.
DOI : 10.1021/es2037405

URL : https://hal.archives-ouvertes.fr/hal-01519292

J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. Prevot, Q. Zhang et al., Evolution of Organic Aerosols in the Atmosphere, Science, vol.34, issue.5816, pp.1525-1529, 2009.
DOI : 10.1016/1352-2310(94)90094-9

A. J. Tiwari, J. R. Morris, E. P. Vejerano, M. F. Hochella, . Jr et al., Environmental Science & Technology, vol.48, issue.5, pp.2706-2714, 2014.
DOI : 10.1021/es4045693

J. D. Fortner, D. I. Kim, A. M. Boyd, J. C. Falkner, S. Moran et al., Aggregates with Ozone, Environmental Science & Technology, vol.41, issue.21, pp.7497-7502, 2007.
DOI : 10.1021/es0708058

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science, vol.287, issue.5459, pp.1801-1804, 2000.
DOI : 10.1126/science.287.5459.1801

P. Giannozzi, Oxygen adsorption on graphite and nanotubes, The Journal of Chemical Physics, vol.118, issue.3, pp.1003-1006, 2003.
DOI : 10.1103/PhysRevLett.89.106801

A. Goldoni, R. Larciprete, L. Petaccia, and S. Lizzit, Single-Wall Carbon Nanotube Interaction with Gases:?? Sample Contaminants and Environmental Monitoring, Journal of the American Chemical Society, vol.125, issue.37, pp.11329-11333, 2003.
DOI : 10.1021/ja034898e

O. Carp, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, vol.32, issue.1-2, pp.33-177, 2004.
DOI : 10.1016/j.progsolidstchem.2004.08.001

W. C. Hou and C. Jafvert, Clusters in Sunlight, Environmental Science & Technology, vol.43, issue.2, pp.362-367, 2008.
DOI : 10.1021/es802465z

P. Nissenson, C. J. Knox, B. J. Finlayson-pitts, L. F. Phillips, and D. Dabdub, Enhanced photolysis in aerosols: evidence for important surface effects, Physical Chemistry Chemical Physics, vol.90, issue.5, pp.4700-4710, 2006.
DOI : 10.6028/jres.045.044

Y. Cheng, L. Yin, S. Lin, M. Wiesner, E. Bernhardt et al., Toxicity Reduction of Polymer-Stabilized Silver Nanoparticles by Sunlight, The Journal of Physical Chemistry C, vol.115, issue.11, pp.4425-4432, 2011.
DOI : 10.1021/jp109789j

M. Wiesner, G. Lowry, P. Alvarez, D. Dionysiou, and P. Bisawas, Assessing the Risks of Manufactured Nanomaterials, Environmental Science & Technology, vol.40, issue.14, pp.4336-4345, 2006.
DOI : 10.1021/es062726m

URL : http://pubs.acs.org/doi/pdf/10.1021/es062726m

T. A. Egerton and J. A. Mattinson, Comparison of photooxidation and photoreduction reactions on TiO2 nanoparticles, Journal of Photochemistry and Photobiology A: Chemistry, vol.186, issue.2-3, pp.115-120, 2007.
DOI : 10.1016/j.jphotochem.2006.07.018

L. X. Chen, T. Rajh, Z. Wang, and M. C. Thurnauer, Nanoparticles and Photocatalytic Reduction of Metal Ions, The Journal of Physical Chemistry B, vol.101, issue.50, pp.10688-10697, 1997.
DOI : 10.1021/jp971930g

A. L. Linsebigler, G. Lu, J. T. Yates, and . Jr, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, vol.95, issue.3, pp.735-758, 1995.
DOI : 10.1021/cr00035a013

M. Ndour, P. Conchon, B. Anna, O. Ka, and C. George, Photochemistry of mineral dust surface as a potential atmospheric renoxification process, Geophysical Research Letters, vol.34, issue.5, p.36, 2009.
DOI : 10.1029/2008GL036662

URL : https://hal.archives-ouvertes.fr/hal-00463256

H. Chen, C. E. Nanayakkara, and V. H. Grassian, Titanium Dioxide Photocatalysis in Atmospheric Chemistry, Chemical Reviews, vol.112, issue.11, pp.5919-5948
DOI : 10.1021/cr3002092

M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surface Science Reports, vol.66, issue.6-7, pp.185-297, 2011.
DOI : 10.1016/j.surfrep.2011.01.001

T. Tatsuma, S. I. Tachibana, T. Miwa, D. A. Tryk, and A. Fujishima, in the Gas Phase, The Journal of Physical Chemistry B, vol.103, issue.38, pp.8033-8035, 1999.
DOI : 10.1021/jp9918297

S. L. Daniels, On the qualities of the air as affected by radiant energies (photocatalytic ionization processes for remediation of indoor environments), Journal of Environmental Engineering and Science, vol.37, issue.1, pp.329-342, 2007.
DOI : 10.1016/S1352-2310(03)00357-1

C. E. Nanayakkara, W. A. Larish, and V. H. Grassian, : Roles of Surface Hydroxyl Groups and Adsorbed Water in the Formation and Stability of Adsorbed Products, The Journal of Physical Chemistry C, vol.118, issue.40, pp.23011-23021, 2014.
DOI : 10.1021/jp504402z

G. Rubasinghege, S. Elzey, J. Baltrusaitis, P. M. Jayaweera, and V. H. Grassian, Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent Nanoscale Redox Chemistry, The Journal of Physical Chemistry Letters, vol.1, issue.11, pp.1729-1737, 2010.
DOI : 10.1021/jz100371d

Y. Bedjanian, Surface Under UV Irradiation: Products Study, The Journal of Physical Chemistry A, vol.116, issue.7, pp.1758-1764, 2012.
DOI : 10.1021/jp210078b

URL : https://hal.archives-ouvertes.fr/insu-01192758

M. A. Kebede, M. E. Varner, N. K. Scharko, R. B. Gerber, and J. D. Raff, under Atmospheric Conditions, Journal of the American Chemical Society, vol.135, issue.23, pp.8606-8615, 2013.
DOI : 10.1021/ja401846x

M. E. Monge, C. George, B. Anna, J. F. Doussin, A. Jammoul et al., Ozone Formation from Illuminated Titanium Dioxide Surfaces, Journal of the American Chemical Society, vol.132, issue.24, pp.8234-8235, 2010.
DOI : 10.1021/ja1018755

URL : https://hal.archives-ouvertes.fr/hal-00512044

H. Chen, C. O. Stanier, M. A. Young, and V. H. Grassian, A Kinetic Study of Ozone Decomposition on Illuminated Oxide Surfaces, The Journal of Physical Chemistry A, vol.115, issue.43, pp.11979-11987, 2011.
DOI : 10.1021/jp208164v

N. J. Pekney, C. I. Davidson, K. J. Bein, A. S. Wexler, and M. V. Johnston, Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization, Atmospheric Environment, vol.40, pp.411-423, 2006.
DOI : 10.1016/j.atmosenv.2005.12.072

A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. Von-goetz, Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology, vol.46, issue.4, pp.2242-2250
DOI : 10.1021/es204168d

URL : http://europepmc.org/articles/pmc3288463?pdf=render

Y. Li, J. Niu, W. Zhang, L. Zhang, and E. Shang, under UV-365 Irradiation, Langmuir, vol.30, issue.10, pp.2852-2862, 2014.
DOI : 10.1021/la5000028

N. Nakajima, C. Nishi, F. M. Li, and Y. Ikada, Photo-induced cytotoxicity of water-soluble fullerene. Fuller Sci, pp.1-19
DOI : 10.1080/10641229608001533

A. Sakai, Y. Yamakoshi, and N. Miyata, Visible Light Irradiation of [60]Fullerene Causes Killing and Initiation of Transformation in Balb/3T3 Cells, Fullerene Science and Technology, vol.46, issue.5, pp.743-756, 1999.
DOI : 10.1021/ja9813459

M. Misawa and J. Takahashi, Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, issue.5, pp.604-614, 2011.
DOI : 10.1016/j.nano.2011.01.014

E. G. Heckert, A. S. Karakoti, S. Seal, and W. Self, The role of cerium redox state in the SOD mimetic activity of nanoceria, Biomaterials, vol.29, issue.18, pp.2705-2709, 2008.
DOI : 10.1016/j.biomaterials.2008.03.014

R. Patakfalvi, D. Diaz, D. Velasco-arias, G. Rodriguez-gattorno, and P. Santiago-jacinto, Synthesis and direct interactions of silver colloidal nanoparticles with pollutant gases, Colloid and Polymer Science, vol.9, issue.1, pp.67-77, 2008.
DOI : 10.1007/s00396-007-1702-0

V. Kerminen, M. Paramonov, T. Anttila, I. Riipinen, C. Fountoukis et al., Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmospheric Chemistry and Physics, vol.12, issue.24, pp.12037-12059, 2012.
DOI : 10.1021/cr2001756

Y. I. Tsai, Atmospheric visibility trends in an urban area in Taiwan 1961???2003, Atmospheric Environment, vol.39, issue.30, pp.5555-5567, 1961.
DOI : 10.1016/j.atmosenv.2005.06.012

W. C. Malm and D. E. Day, Estimates of aerosol species scattering characteristics as a function of relative humidity, Atmospheric Environment, vol.35, issue.16, pp.2845-2860, 2001.
DOI : 10.1016/S1352-2310(01)00077-2

I. N. Tang, W. T. Wong, and H. Munkelwitz, The relative importance of atmospheric sulfates and nitrates in visibility reduction, Atmospheric Environment (1967), vol.15, issue.12, pp.2463-2471, 1981.
DOI : 10.1016/0004-6981(81)90062-7

A. P. Waggoner, R. E. Weiss, N. C. Ahlquist, D. S. Covert, S. Will et al., Optical characteristics of atmospheric aerosols, Atmospheric Environment (1967), vol.15, issue.10-11, pp.1891-1909, 1981.
DOI : 10.1016/0004-6981(81)90224-9

, Atmosphere, vol.2017, issue.84, pp.28-29

A. Database, N. Accident, and . @bullet, Rejet de Noir de Carbone par une Usine de Pneumatiques Available online, 2017.

H. Le, J. Lacome, A. Vignes, B. Debray, B. Truchot et al., A few fundamental aspects related to the modeling of an accidental massive jet release of nanoparticles, Chem. Eng. Trans. 2016, vol.48, pp.25-30

H. Le, J. Lacome, A. Vignes, B. Debray, B. Truchot et al., Modelling of test case particle-laden jet with NEPTUNE/CFD, Proceedings of the 14th Workshop on Two-Phase Flow Predictions, pp.7-10, 2015.
URL : https://hal.archives-ouvertes.fr/ineris-01855191

M. Ketzel and R. Berkowicz, Modelling the fate of ultrafine particles from exhaust pipe to rural background: an analysis of time scales for dilution, coagulation and deposition, Atmospheric Environment, vol.38, issue.17, pp.2639-2652, 2004.
DOI : 10.1016/j.atmosenv.2004.02.020

M. Karl, J. Kukkonen, M. P. Keuken, S. Lützenkirchen, L. Pirjola et al., Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki, Atmospheric Chemistry and Physics, vol.16, issue.8, pp.4817-4835, 2016.
DOI : 10.5194/acp-16-4817-2016-supplement

I. Nikolova, S. Janssen, P. Vos, and P. Berghmans, Modelling the Mixing of Size Resolved Traffic Induced and Background Ultrafine Particles from an Urban Street Canyon to Adjacent Backyards, Aerosol and Air Quality Research, vol.14, issue.1, pp.145-155, 2014.
DOI : 10.4209/aaqr.2013.06.0221

W. Choi and S. E. Paulson, Closing the ultrafine particle number concentration budget at road-to-ambient scale: Implications for particle dynamics, Aerosol Science and Technology, vol.47, issue.5, pp.448-461, 2016.
DOI : 10.1080/10473289.2002.10470842

M. P. Keuken, M. Moerman, P. Zandveld, and J. S. Henzing, Total and size-resolved particle number and black carbon concentrations near an industrial area, Atmospheric Environment, vol.122, pp.196-205, 2015.
DOI : 10.1016/j.atmosenv.2015.09.047

M. P. Keuken, M. Moerman, P. Zandveld, J. S. Henzing, and G. Hoek, Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands), Atmospheric Environment, vol.104, pp.132-142, 2015.
DOI : 10.1016/j.atmosenv.2015.01.015

A. Petroff and L. Zhang, Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geoscientific Model Development, vol.3, issue.2, pp.753-769, 2010.
DOI : 10.5194/gmd-3-753-2010

L. Zhang, S. Gong, J. Padro, and L. Barrie, A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment, vol.35, issue.3, pp.549-560, 2001.
DOI : 10.1016/S1352-2310(00)00326-5

J. Zhang and Y. Shao, A new parameterization of particle dry deposition over rough surfaces, Atmospheric Chemistry and Physics, vol.14, issue.22, pp.12429-12440
DOI : 10.5194/acp-14-8869-2014

URL : https://doi.org/10.5194/acp-14-12429-2014

A. M. Manders-groot, A. J. Segers, S. Jonkers, and . Lotos-euros-v2, , 2016.

C. Andronache, T. Grönholm, L. Laakso, V. Phillips, and A. Venäläinen, Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations, Atmospheric Chemistry and Physics, vol.6, issue.12, pp.4739-4754, 2006.
DOI : 10.5194/acp-6-4739-2006

URL : https://hal.archives-ouvertes.fr/hal-00296060

L. Laakso, T. Grönholm, Ü. Rannik, M. Kosmale, V. Fiedler et al., Ultrafine particle scavenging coefficients calculated from 6 years field measurements, Atmospheric Environment, vol.37, issue.25, pp.3605-3613, 2003.
DOI : 10.1016/S1352-2310(03)00326-1

X. Wang, L. Zhang, and M. D. Moran, Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmospheric Chemistry and Physics, vol.10, issue.12, pp.5685-5705, 2010.
DOI : 10.5194/acp-10-5685-2010

URL : https://www.atmos-chem-phys.net/10/5685/2010/acp-10-5685-2010.pdf

F. Gottschalk, T. Sonderer, R. W. Scholz, and B. Nowack, , ZnO, Ag, CNT, Fullerenes) for Different Regions, Environmental Science & Technology, vol.43, issue.24, pp.9216-9222, 2009.
DOI : 10.1021/es9015553

J. A. Meesters, A. A. Koelmands, J. T. Quik, and A. J. Hendriks, Multimedia Modeling of Engineered Nanoparticles with SimpleBox4nano: Model Definition and Evaluation, Environmental Science & Technology, vol.48, issue.10, pp.5726-5736, 2014.
DOI : 10.1021/es500548h

F. Gottschalk, T. Y. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environmental Pollution, vol.181, pp.287-300, 2013.
DOI : 10.1016/j.envpol.2013.06.003

M. Karl, A. Gross, L. Pirjola, and C. Leck, A new flexible multicomponent model for the study of aerosol dynamics in the marine boundary layer, Tellus B: Chemical and Physical Meteorology, vol.304, issue.5, pp.1001-1025, 2011.
DOI : 10.1126/science.1095139

H. Korhonen, K. E. Lehtinen, and M. Kulmala, Multicomponent aerosol dynamics model UHMA: model development and validation, Atmospheric Chemistry and Physics, vol.4, issue.3, pp.757-771, 2004.
DOI : 10.5194/acp-4-757-2004

URL : https://hal.archives-ouvertes.fr/hal-00295438

E. Vignati, J. Wilson, and P. Stier, M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models, Journal of Geophysical Research: Atmospheres, vol.107, issue.D21, p.109, 2004.
DOI : 10.1029/2001JD001549

H. Kokkola, H. Korhonen, K. E. Lehtinen, R. Makkonen, A. Asmi et al., SALSA – a Sectional Aerosol module for Large Scale Applications, Atmospheric Chemistry and Physics, vol.8, issue.9, pp.2469-2483, 2008.
DOI : 10.5194/acp-8-2469-2008

C. Fountoukis, I. Riipinen, H. A. Denier-van-der-gon, P. E. Charalampidis, C. Pilinis et al., Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations, Atmospheric Chemistry and Physics, vol.12, issue.18, pp.8663-8677, 2012.
DOI : 10.5194/acp-11-10823-2011

J. Kukkonen, M. Karl, M. P. Keuken, H. A. Denier-van-der-gon, B. R. Denby et al., et al. Modelling the dispersion of particle numbers in five European cities. Geosci. Model. Dev. 2016, pp.451-478

I. Riipinen, J. R. Pierce, T. Yli-juuti, T. Nieminen, S. Häkkinen et al., Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations, Atmospheric Chemistry and Physics, vol.11, issue.8, pp.3865-3878, 2011.
DOI : 10.5194/acp-11-3865-2011

URL : https://www.atmos-chem-phys.net/11/3865/2011/acp-11-3865-2011.pdf

J. R. Pierce, I. Riipinen, M. Kulmala, M. Ehn, T. Petäjä et al., Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events, Atmospheric Chemistry and Physics, vol.11, issue.17, pp.9019-9036, 2011.
DOI : 10.5194/acp-9-7691-2009

R. Kranenburg, A. J. Segers, C. Hendriks, and M. Schaap, Source apportionment using LOTOS-EUROS: module description and evaluation, Geoscientific Model Development, vol.6, issue.3, pp.721-733
DOI : 10.1016/j.atmosenv.2005.10.007

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http, Licensee MDPI