Ip M+2/ 2 "Q /B ;MQbiB+b Q7 1?2 *J Z M/ *°
KQ/2HHBM; bvbi2Kb rBi?BM i?72 ZJ1AAj K
2p Hm iBQM 7 K2rQ F
1}bBQ aQH xxQ-*?"BbiB M >Q; 272- m;mbiBM *QH2
ai27 MQ : HK "BMB

hQ +Bi2 i?Bb p2° bBQM,

1}1bBQ aQH xxQ-*?"BbiB M >Q;'272- m;mbiBM *QH2ii2-J i :XoBp M+
2°°Q /B ;MQbiB+b Q7 i?2 *3J Z M/ *?BK2'2 KQ/2HHBM; bvbi2Kb rBi?BM
iBQM 7° K2rQ FX iKQbT?2'B+ *?22KBbi'v M/ S?vbB+b- 1m QT2 M :2Q
TTXRYy9j8@Ry9e8X RyX8RNI9f +T@RAd@Ry9j8@kyRd X BM2 Bb@yR3e

> G A/, BM2 Bb@yR3ejky]j
?21iTbh,ff? H@BM2 BbX +?Bp2b@Qmp2 i2bX7 fBM2
am#KBii2/ QM k3 m; kyR3

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal-ineris.archives-ouvertes.fr/ineris-01863203
https://hal.archives-ouvertes.fr

Atmos. Chem. Phys., 17, 10435-10465, 2017 Atmospheric
https://doi.org/10.5194/acp-17-10435-2017

© Author(s) 2017. This work is distributed under Chem IS_try
the Creative Commons Attribution 3.0 License. and Physics

Advanced error diagnostics of the CMAQ and Chimere modelling
systems within the AQMEII3 model evaluation framework

E sio Solazzo!, Christian Hogrefe?, Augustin Colette®, Marta Garcia-Vivanco3#, and Stefano GalmarinP

1European Commission, Joint Research Centre (JRC), Directorate for Energy, Transport and Climate, Air and Climate Unit,
Ispra (VA), Italy

2Environmental Protection Agency, Computational Exposure Division, National Exposure Research Laboratory,

Of ce of Research and Development, Research Triangle Park, NC 27711, USA

SINERIS, Institut National de I'Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France
4CIEMAT, Avda Complutense 40, Madrid, Spain

SEuropean Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Food and Security Unit,
Ispra (VA), ltaly

Correspondence td sio Solazzo (e sio.solazzo@ec.europa.eu)

Received: 20 March 2017 — Discussion started: 24 March 2017
Revised: 7 July 2017 — Accepted: 29 July 2017 — Published: 7 September 2017

Abstract. The work here complements the overview analy- to both models. In particular, (i) the uctuations slower than
sis of the modelling systems participating in the third phase 1.5 days account for 70-85 % of the mean square error of
of the Air Quality Model Evaluation International Initiative the full (undecomposed) ozone time series; (ii) a recursive,
(AQMEII3) by focusing on the performance for hourly sur- systematic error with daily periodicity is detected, respon-
face ozone by two modelling systems, Chimere for Europesible for 10-20 % of the quadratic total error; (iii) errors in
and CMAQ for North America. representing the timing of the daily transition between sta-
The evaluation strategy outlined in the course of the threebility regimes in the PBL are responsible for a covariance
phases of the AQMEII activity, aimed to build up a diagnos- error as large as 9 ppb (as much as the standard deviation of
tic methodology for model evaluation, is pursued here andthe network-average ozone observations in summer in both
novel diagnostic methods are proposed. In addition to evalEurope and North America); (iv) the CMAQ ozone error has
uating the “base case” simulation in which all model com- a weak/negligible dependence on the errors inpN@hile
ponents are con gured in their standard mode, the analysighe error in NQ signi cantly impacts the ozone error pro-
also makes use of sensitivity simulations in which the modelsduced by Chimere; (v) the response of the models to vari-
have been applied by altering and/or zeroing lateral boundations of anthropogenic emissions and boundary conditions
ary conditions, emissions of anthropogenic precursors, anghow a pronounced spatial heterogeneity, while the seasonal
ozone dry deposition. variability of the response is found to be less marked. Only
To help understand of the causes of model de ciencies, theduring the winter season does the zeroing of boundary values
error components (bias, variance, and covariance) of the bader North America produce a spatially uniform deterioration
case and of the sensitivity runs are analysed in conjunctiorof the model accuracy across the majority of the continent.
with timescale considerations and error modelling using the
available error elds of temperature, wind speed, andyNO
concentration. 1
The results reveal the effectiveness and diagnostic power
of the methods devised (which remains the main scope of thishe vast majority of the research and applications related to
study), allowing the detection of the timescale and the elds the evaluation of geophysical models make use of aggregate
that the two models are most sensitive to. The representastatistical metrics to quantify, in some averaged sense, the
tion of planetary boundary layer (PBL) dynamics is pivotal properties of the residuals obtained from juxtaposing obser-
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vations and modelled output (typically time series of the vari- questions have a straightforward, very practical impact on
able of interest). This practice is rooted in linear regressionthe use of models, the return they provide (the value), and
analysis and the assumption of normally distributed residualgheir credibility. Answers to these questions are also relevant
and has been proven to be reliable when dealing with sim+o the widespread practice of bias correction, which aims to
ple, deterministic, and low-order models. Led by the rapidadjust the model value to the observed value rather than cor-
pace of improved understanding of the underlying physicsrect the causes of the bias which might stem from systematic,
the paradigm is, however, changed nowadays in that modelsumulative errors.
have grown in complexity and non-linear interactions and re- The main aims of this study are to move towards tools de-
quire more powerful and direct diagnostic methods (Wagenewised to enable diagnostic interpretation of model errors, fol-
and Gupta, 2005; Gupta et al., 2008; Dennis et al., 2010; Solowing the approach of Gupta et al. (2008, 2009), Solazzo
lazzo and Galmarini, 2016). and Galmarini (2016), and Kioutsioukis et al. (2016), and
Evaluation of geophysical models is typically carried out to advance the evaluation strategy outlined in the course of
under the theoretical umbrella proposed by Murphy in thethe three phases of AQMEII. In particular, the work pre-
early 1990s for assessing the dimensions of goodness afented here is meant to complement the overview analysis
a forecast: consistency (“the correspondence between foresf the modelling systems participating in AQMEII3 (sum-
casters' judgments and their forecasts”), quality (“the cor-marised by Solazzo et al., 2017) by concentrating on the per-
respondence between the forecasts and the matching obsdormance for surface ozone modelled by two modelling sys-
vations”), and value (“the incremental bene ts realised by tems: Chimere for Europe (EU) and CMAQ for North Amer-
decision makers through the use of the forecasts”) (Murphyjca (NA). This study attempts to
1993). Since 2010, the Air Quality Model Evaluation Inter-
national Initiative (AQMEII, Rao et al., 2011) has focused
on the quality dimension — the one most relevant to science,
according to Weijs et al. (2010) — of air quality model hind-  _ attribute each type of error to processes by utilising
cast products, aiming to build an evaluation strategy that is modelling runs with modi ed uxes at the boundaries
informative for modellers as well as to users. (anthropogenic emissions and deposition at the sur-

— identify the timescales (or frequencies) of the error of
modelled ozone;

Our claim is that thevalue of a model's result depends
strictly on thequality of the model that, in turn, depends

on sound evaluation. The scienti ¢ problem of assessing the

quality of a modelling system for air quality is tackled by

face and boundary conditions at the bounding planes of
the domain) and breaking down the mean square error
(MSE) into bias, variance, and covariance — this anal-
ysis allows us to diagnose the quality of error and to

Dennis et al. (2010) who distinguish four complementary ap-
proaches to support model evaluation — operational, proba-
bilistic, dynamic, and diagnostic — which are also the four
founding pillars of AQMEII. Several studies performed un-
der AQMEII have focused on the operational and probabilis- — investigate the periodicity of the ozone error which can
tic evaluation (Solazzo et al., 2012a, b, 2013; Imetal., 2015a,  be symptomatic of recursive (either casual or system-
b; Appel et al., 2012; Vautard et al., 2012) and more recently ~ atic) model de ciencies;

efforts have been expanded to the diagnostic aspect (Hogrefe _
et al., 2014; Solazzo and Galmarini, 2016; Kioutsioukis et
al., 2016; Solazzo et al., 2017).

Operational metrics usually employed in air quality eval-
uation (see Simon et al., 2012, for a review) have several
limitations as summarised by Tian et al. (2016): interdepen-
dence (they are related to each other and are redundant in
the type of information they provide), underdetermination
(they do not describe unique error features), and incompleteAmong the several models participating in AQMEII3,
ness (how many of these metrics are required to fully characCMAQ and Chimere have been selected as the analysis pro-
terise the error?). Furthermore, they do not help to determingosed in this study requires additional simulations beyond
the quality problem set above in terms of diagnostic power.those performed by all AQMEII3 groups, which implied ad-
Gauging (average) model performance through model-toditional dedicated resources that were not available to all
observation distance leaves open several questions such gsoups. This of course opens an important issue connected
(a) how much information is contained in the error? In otherwith the relevance of models in decision making, the ade-
words, what remains wrong with our underlying hypothesis quacy of their contribution, and consequently the fact that far
and modelling practice? (b) Is the model providing the cor- more resources would be required by the present complexity
rect response for the correct reason? (c) What is the degree aind state of development of modelling systems to guarantee
complexity of the system models can actually match? These¢hat deeper evaluation strategies are put in place. Although

determine whether it is caused by external conditions or
due to missing or biased parameterisations or process
representations;

determine the role of the error of precursor or meteo-
rological elds in explaining the ozone error. The sig-
ni cance (or the non-signi cance) of a correlation be-
tween the ozone error and that of one of the explanatory
variables can help to understand the impact (or lack of
impact) of the latter on the ozone error as well as the
timescale of the process(es) causing the error.
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only these two modelling systems are analysed here, theyn order to more directly compare to the averaging used
represent two well-established systems that have been sy# the observations. This is of particular relevance when
tematically developed over many years, are in use by a largestimating the error due to timing of the diurnal cycle
number of research groups around the world, and also havdiscussed in Sect. 4.3.
participated in the various phases of AQMEII. For the analyses conducted in this study, the spatial av-
The data, model features, and error decompositionerage of the observed and modelled ozone time series has
methodology are summarised in Sect. 2. Results of the agbeen carried out prior to any time aggregation; i.e. the spa-
gregate time series and error decomposition analyses are préal average is created by averaging the hourly values over
sented in Sect. 3 and results of the diagnostic error investigaall rural stations in each region. Missing values in the time
tion through wavelet, autocorrelation, and multiple regres-series, prior to the spatial averaging, have not been imputed.
sion analysis are presented in Sect. 4. Discussion, concluFhe analysis is restricted to stations with a data completeness
sions, and nal remarks are drawn in Sects. 5 and 6. percentage above 75 % and located below 1000 m above sea
level. Time series with more than 335 consecutive missing
records (14 days) have been also discarded. The number of

2 Methods rural receptorsecs for ozone is 38, 184, and 40 for EU1,
EU2, and EU3 and 73, 43, and 28 for NAL1, NA2, and NA3,
2.1 Data and models respectively. The EU continental domain used for analyses

extends between 30 and 60 latitude and between 25 and
Unless otherwise speci ed, analyses are carried out and re70 longitude, whereas the NA continental domain extends
sults are presented for the rural receptors of three subregiornsetween 130 and 40 latitude and between 23.5 and 69
over each continental area as shown in Fig. 1. The three subengitude.
regions have been selected based on similarity analysis of the The con guration of the CMAQ and Chimere modelling
observed ozone uctuations slower tharl.5 days. The re- systems for AQMEII3 is extensively discussed in Solazzo et
gions where the slow uctuations showed similar character-al. (2017) with respect to resolution, parameterisations, and
istics were selected through unsupervised hierarchical clusinputs of emissions, meteorology, land use, and boundary
tering (details in Solazzo and Galmarini, 2015). Due to theconditions. For completeness a short summary is provided
similarity of the observations within these regions, which hereafter.
implies that they experience common physical and chemi- The CMAQ model (Byun and Schere, 2006) is con g-
cal characteristics, spatial averaging within these subregionared with a horizontal grid spacing of 12km and 35 verti-
was carried out. cal layers (up to 50 hPa) and uses the widely applied CB05-
The stations used for the analysis are part of European (EuFUCL chemical mechanism (carbon bond mechanism; Whit-
ropean Monitoring and Evaluation Programme: EMEP; http:ten et al., 2010) for the representation of gas-phase chemistry.
IIwww.emep.int/; European Air Quality Database AirBase; Emissions from natural sources are calculated by the Bio-
http://acm.eionet.europa.eu/databases/airbase/) and Nortenic Emissions Inventory System (BEIS) model. The mete-
American (USEPA Air Quality System AQS: http://www. orology is calculated by the Weather Research and Forecast
epa.gov/ttn/airs/airsaqs/; Analysis Facility operated by Envi-(WRF) model (Skamarock et al., 2008) with nudging of tem-
ronment Canada: http://www.ec.gc.ca/natchem/) monitoringperature, wind, and humidity above the planetary boundary
networks. Full details are given in Solazzo et al. (2017) andlayer (PBL) height. In CMAQ, dry deposition is used as a
references therein. ux boundary condition for the vertical diffusion equation.
Following the approach used in previous AQMEIl A review of CMAQ dry deposition model as well as other
investigations, modelled hourly concentrations in approaches is provided in Pleim and Ran (2011).
the lowest model layer (20m for both models) Chimere (Menut et al., 2013) is con gured with a grid
and corresponding observational data are paired imof 0.25 (corresponding, approximately, to 25knil8 km
time and space to provide a verication data sampleover France), nine vertical layers (up to 500 hPa), and uses
mooﬁ;obs‘;lt D 1;:::;8760r D 1;:::;Nntecs Of Ngcs (NUM- the Melchior2 chemical mechanism (Lattuati, 1997) for the
ber of monitoring stations) record of matched modelled andrepresentation of gas-phase chemistry. Natural emissions are
observational data, where théh pair mod® and ob¥ is calculated using the MEGAN model (Guenther, 2012). The
evaluated at receptorat a given timeg. Further, while the  hourly meteorological elds are retrieved from the Integrated
observations are reported at the hour at the end (for Europdjorecast System (IFS) operated by the European Centre for
or at the beginning (for NA) of the hourly averaging win- Medium-Range Weather Forecast (ECMWF). In Chimere the
dow, the model values available in this study are provideddry deposition process is described through a resistance anal-
instantaneously. Therefore, the model concentrations weregy (Wesely, 1989). For each model species, three resis-
assumed to be linear between the instantaneous on-the-hotances are estimated: the aerodynamical resistance, the re-
reporting times; the integration (average) between thosesistance to diffusivity near the ground, and the surface re-
times was used to construct hour starting (or ending) values
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Figure 1. Continental domains and subregions used for analysis. The networks of ozone receptors are also shown.

sistance. For particles, the settling velocity is added. More
information is included in Menut et al. (2013).

Both models are widely used worldwide in a range of ap-
plications such as scenario analysis, forecasting, ensemble
modelling, and model intercomparison studies.

2.2 Sensitivity runs with CMAQ and Chimere

The Chimere and CMAQ models have been used to perform —
a series of sensitivity simulations aiming for a better under-
standing of the causes of differences between the base model
simulations and observed data. In particular, the following
set of sensitivity runs was performed:

— One annual run with zeroed anthropogenic emissions
provided an indication of the amount of regional ozone —
due to boundary conditions and biogenic emissions (re-
ferred to as “zero emi”).

of the model domain provided an indication of amount
of ozone formed due to anthropogenic and biogenic
emissions within the domain (in addition to the con-
stant value for EU) (referred to as “zero BC” and “const
BC"). All species other than ozone had boundary con-
dition values of zero for both NA and EU in these sen-
sitivity simulations.

One annual run was performed where the anthropogenic
emissions are reduced by 20 %. In addition, the bound-
ary conditions for this run were prepared from a C-IFS
simulation (detail in Galmarini et al., 2017, and refer-
ences therein) in which global anthropogenic emissions
were also reduced by 20 % (referred to as a “20 % red”).

One run with ozone dry deposition velocity set to zero
was available for the months of January and July (re-
ferred to as “zero dep”).

— One annual run with a constant value of ozone (zeroThe analyses presented are not meant to intercompare the
for NA and 35ppb for EU) at the lateral boundaries two modelling systems, as the CMAQ and Chimere models

Atmos. Chem. Phys., 17, 10435-10465, 2017
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Figure 2. Average monthly (columm) and diurnal curves (columin) constructed from the January—December 2010 time series of hourly
ozone observations and model simulations for three North American subregions.

are applied to non-comparable contexts (different emissions,ed by the correlation coef cient, i.e. in the covariance term
meteorology, and observational data). The response of eactGupta et al., 2009).
model to the changes in emissions, boundary conditions, and The MSE is a quadratic, parametric metric widely applied

deposition needs to be interpreted independently. in many contexts and occurs because the model does not ac-
count for information that could produce a more accurate es-
2.3 Error diagnostic metric timate. Put in an information theory context, the MSE pro-

vides a measure of the information about the observation that
To aid diagnostic interpretation, the mean square (oris missing from a Gaussian model centred at a deterministic
quadratic) error (MSP ETmod  obd3/ is decomposed ac-  prediction (Nearing et al., 2016). Ideally, the deviation of a
cording to perfect model from the observation should be zero or sim-
ply white noise (uncorrelated, zero mean, constant variance).
., ) Various avours of MSE decomposition have been exploited
MSED mod obs C. n o/“C2 1 o.1 71/ in several geophysical contexts (Enthekabi, et al., 2010; Mur-
D biag C varC covar (1)  Phy, 1988; Wilks, 2011; Wilmott, 1981; Gupta et al., 2009),
all stemming from the consideration that the bias, the vari-
where and . are the modelled and observed standard de-2nce, and the covariance characterise different (although not
viation, var and covar are the variance and covariance operg0mplementary and not exhaustive) properties of the error —
tors,r is the linear correlation coef cient, and bias is the time ccuracy, precision, and correspondence, respectively.
averaged offset between the mean modelled and observed The relative contribution of each of the MSE components
ozone concentration. The decomposition in Eq. (1) (and sevi© the overall MSE is summarised by the Theil coef cients
eral variations of it), derived e.g. by Theil (1961), has been(Theil, 1961):
extensively discussed in Potempski and Galmarini (2009), i
Solazzo and Galmarini (2016), and Gupta et al. (2009). The b P bias'=MSE
rst two moments (mean and variance) relate to the systemFv D var=-MSE
atic error (unconditional bias) and variability (variance), re- F; D covarMSE: )
spectively. All other differences between the statistical prop-
erties of modelled and observed chemical species (e.g. th&€he overall MSE suffers from the limitations of the aggregate
timing of the peaks and autocorrelation features) are quantimetrics discussed in the introductory section, lacking inde-
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Figure 3. Average monthly (columm) and diurnal curves (columin) constructed from the January—December 2010 time series of hourly
ozone observations and model simulations for three European subregions.

pendence and explanatory power (Tian et al., 2016). Whersistent with the springtime peak in northern hemispheric
decomposed (e.g according to Eq. 1), however, the underdeésackground ozone (Penkett and Brice, 1986; Logan, 1999)
termination issue is reduced and the MSE coef cients (Eq. 2)and the predominant westerly and north-westerly in ow into
do offer diagnostic aid in interpreting the modelling error the NA domain. The background ozone springtime peak is
(Gupta et al., 2009). thought to be caused by a combination of more frequent
tropospheric—stratospheric exchange and in-situ photochem-
ical production during that season (Atlas et al., 2003).

The daily averaged pro les of mean ozone for NA show
that the observed peak (occurring between 16:00-18:00 LT
in NA1l and NA2 and 1h earlier in NA3) is preceded by
the peak in the base run byl hin NA2 and by 2-3hin

Figures 2 and 3 show monthly and diurnal curves for the baséA1, while the timing of the observed minimum (occurring
and sensitivity simulations over the three subregions in eactft 08:00-09:00LT) is captured by the base run in NA2 and
continent. Results show that the monthly averaged curves ofNA3 while it is preceded by the base run byLh in NA1.
the zeroed emission runs peak in April in NA and in July in The modelled morning transition to convective conditions is
EU (May to July in EU1 are approximately the same), indi- in phase with the observations except for NA1, where the
cating the periods when the impact of background concennodelled transition occurs 1 h earlier than the observed one.
tration (boundary conditions) and biogenic emissions on re-The modelled afternoon transition in NA1 precedes the ob-
gional ozone is largest: springtime in NA and summer in EU. S€ved transition by 3—4 h, possibly due to errors in the par-
The monthly curves of “zero BC” and “zero emi” for NA are titioning between sensible and latent surface heat ux that
anticorrelated between the months of April to July—August Causes a faster-than-observed collapse of the PBL. One pos-
(“zero emi” curve decreasing and “zero BC” curve raising) sible reason, as discussed in Appel et al. (2017), could re-
and during autumn (“zero emi” curve rising and “zero BC” side in the stomatal conductance function and the heat ca-
curve decreasing), framing the interplay among these twdPacity for vegetation in WRF and the ACM2 vertical mixing
factors in terms of total 0zone loading: boundary conditionsScheéme in both WRF and CMAQ (relative to the version of
dominate in autumn—winter and biogenic plus anthropogenic//RF and CMAQ used in the current study). Recent updates
emissions are more important during spring—summer. Thd© these processes in CMAQ lead to a change in the modelled
springtime peak for the zero emissions case over NA is condiurnal cycle of ozone as well as other pollutants and meteo-

3 Sensitivity analysis to emissions and boundary
conditions perturbations

3.1 Aggregated time series of ozone

Atmos. Chem. Phys., 17, 10435-10465, 2017 www.atmos-chem-phys.net/17/10435/2017/
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Figure 4. MSE decomposition for June—August hourly ozone into bias, variance, and covariance for the three North American (NA) subre-
gions. Results are presented separately for daylight Haliesid nighttime hourgb).

rological variables. In particular, the updates lead to a delayest performance, with signi cant underestimation between
in the evening collapse of the modelled PBL (Appel et al., midnight and 09:00 LT (5-7 ppb) and overestimation in day-
2017). light conditions (7-9 ppb).

The shape of the “zero BC” curve is similar in amplitude  As opposed to the CMAQ case for NA, the shape of the
to that of the base run, suggesting that the effect of the re“zero emi” curve of Chimere closely follows the shape that
gional/background ozone represented through boundary coref the base case (even when considering only the stations
ditions in a limited area model is mainly to shift the mean classi ed as “urban”; Fig. S2 in the Supplement). Due to the
concentration upwards, while it has no major effect on thelong time average (1 year), the daily pro les displayed in
frequency modulation. By contrast, the absence of anthroFigs. 2 and 3 do not provide information about the exact tim-
pogenic emissions has a major effect on the amplitude of théng of the minima and maxima for each season throughout
signal as well as its magnitude (“zero emi” curve). As dis- the year. Figures S3 and S4 report the seasonal average di-
cussed in the next section, these considerations translate intarnal pro les for the model predictions and the observations
the bias and/or variance type of error due to the boundarynetwork average over all stations) and show that the timing
conditions and emissions. of the ozone diurnal cycle varies seasonally.

As for EU (Fig. 3), the observed daily pro les in EU1 and
EU2 are closely matched by the Chimere model betweers 2  Eyror decomposition
11:00 and 23:00LT (underestimated outside these hours),

while in EU3 the daily peak (observed at 19:00-20:00LT) is The plots in Figs. 4 (NA) and 5 (EU) show the MSE de-

consistently occurring earlier in the model and its magnltudecomposition according to Eq. (1) for the summer months of

is overestimated. The morning transition occgrs_earller in theJune, July, and August for the base case simulation as well as
model than the observations and follows a signi cant model

d dicti f niahtti q I - d the sensitivity simulations, distinguishing between daylight
uncderprediction ot nighttime and early morning ozone ue(from to 05:00 to 09:00 LT) and nighttime hours (the remain-
to dif culties in reproducing stable or near-stable conditions

. ing hours, from 10:00 to 04:00LT). These plots are meant to
(Bessagnetetal,, 2016). In EUS, the model displays the POOT3id the understanding of the relative impacts of potential er-

www.atmos-chem-phys.net/17/10435/2017/ Atmos. Chem. Phys., 17, 10435-10465, 2017
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Figure 5. MSE decomposition for June—August hourly ozone into bias, variance, and covariance for the three EU subregions (the zero dep

E. Solazzo et al.: Advanced error diagnostics of the CMAQ and Chimere modelling systems

data refers to the month of July only). Results are presented separately for daylighfa)@und nighttime hourgb).

rors in lateral boundary conditions, anthropogenic emissions,
and the representation of ozone dry deposition on the total
model error by comparing the magnitude and type of model
error from these simulations against the model error for the
base case.

The plots in Figs. 6 to 15 are complementary to Figs. 4 and
5 and show the error decomposition for both the summer and
winter season in more detail, including the error coef cients
Fp, Fv, andF¢ of Eq. (2) (left vertical axis), the total MSE
(right vertical axis), the sign of the bias and variance error
( for model over- and underprediction), and the values of
the correlation coef cient. Furthermore, the maps in Figs. 16
and 17 show the root MSE (RMSE) at the receptors for the
“base” case as well &sRMSE, i.e. the percentage change of
RMSE of the sensitivity runs with respect to the “base” case
simulation:

1 RMSED 100 .RMSE; RMSE,3sd=RMSEyas6

where the subscript indicates the zeroed emission or the
zeroed (constant) boundary condition simulatichRMSE
is measured as percentage).

The CMAQ results for NA are presented in Figs. 4, 6-10,
and 16 and can be summarised as follows:

Atmos. Chem. Phys., 17, 10435-10465, 2017

— The MSE of the base case (M&Ed during summer

daylight is mainly due to bias (35% in NA1l and
75 % in NA2 and NA3) and the remaining portion is

due to covariance error. The fact that there is no vari-
ance error shows that the model is able to replicate
the observed 3-month averaged variability. Possible rea-
sons for the positive model bias (model overestimation)
have been discussed in Solazzo et al. (2017) and in-
cludes overestimation of emissions precursors (Travis
etal., 2016) and absence of correct parameterisations of
forested areas on surface ozone (Makar et al., 2017).

— The effect of zeroing the emissions of anthropogenic
pollutants on the summer MSE is a rise by a factd
to 4 (daylight) and by a factor 6 to 7 (nighttime) in
NA1 and NA2 with respect to MSksg during night-
time in NA3 the MSE stays approximately the same,
indicating that the emissions play a negligible role in
determining the total error in this subregion during sum-
mer night.

— Furthermore, all the error components deteriorate in the
simulations with zero anthropogenic emissions except
for the bias in NA3. This is particularly true for the
variance, signifying the fundamental role of emissions

www.atmos-chem-phys.net/17/10435/2017/
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Figure 6. CMAQ MSE breakdown for summer and winter for the base case (hourly time series of ozone) over NA. The error coef cients
Fp, Fv, andF¢ are reported on the left axis and the total MSE @ptn the right axis (red triangles). Ti@ and  signs within the bias

and variance portions of the errors indicate model over- and underprediction of mean concentration or variance, respectively. The values in
the covariance portion indicate the correlation coef cient between modelled and observed time series. Results are provided separately for
daytime and nighttime.

Figure 7. As in Fig. 6 for the hourly time series of “20 % reduction” scenario.

in shaping the diurnal variation of ozone. Indeed, this
suggests that the absence of a variance error in the base
case (see above) is due to the correct interplay between
the temporal/spatial distribution of the emissions, po-
tentially coupled with the variability due to the meteo-
rology.

The covariance share of the error also increases (al-
though only slightly in NA2) for the zero emissions
case, indicating that the emissions play a role in deter-
mining the timing of the modelled diurnal ozone signal,
this increase is more pronounced during nighttime.

The zeroing of the input of ozone from the lateral
boundaries has either no effect or only a limited effect
(e.g. daylight summer in NA2; Fig. 4) on the variance
and covariance shares of the error, while it has a pro-

www.atmos-chem-phys.net/17/10435/2017/

found impact on the bias portion. This impact is ap-
proximately equal during daylight and nighttime, as ex-
pected from the discussion of the daily cycle shown in
Fig. 2.

The removal of ozone dry deposition from the model
simulations (results based on July only) has the most
profound impact, increasing by 1 order of magnitude
the MSE of the base case, which is approximately dou-
ble the combined effect of the emissions and boundary
conditions perturbation. This sensitivity gives a gross
indication of the relative strength of this process vs. ex-
ternal conditions during summer, while the “zero BC”
case has a larger effect than the “zero deposition” case
in January (not shown). Similar to the “zero BC” case,
the exclusion of ozone dry deposition from the model
simulations acts as an additive term to the diurnal curve
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in NA1, leaving almost unaltered the shape and timing
of the signal, while it impacts the variance and covari-
ance error in the other two subregions. The small impact
the removal of dry deposition has on the covariance er-
ror (timing of the ozone signal) together with the out-
weighing offsetting bias might suggest that the correct
estimate of the deposition magnitude is more bene cial
than, e.g. the time dependence of surface resistance. The
role of the variance is, however, unclear and deserves
further analyses.

The instances where the “20 % red” bias error is lower
than the error of the base case occur when the mean
ozone concentrations were overestimated in the base
case (e.g. daylight for all subregions and NA2 and NA3
over nighttime summer) as illustrated in Figs. 6 and 7.

The maps show that there are stations where the error
is reduced with zero anthropogenic emissions (e.g. a re-
duction of 20—-30 % in the southern coast of the US and
in the far north-east during summer; Fig. 16d). This sug-
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Figure 8. As in Fig. 6 for the hourly time series of “zeroed anthropogenic emissions” scenario.

Figure 9. As in Fig. 6 for the hourly time series of the “zeroed boundary conditions” scenario.

gests the presence of other compensating model errors
in both the base and sensitivity simulations that lead to
better agreement with observations when prescribing an
unrealistic emission scenario. The sources of these com-
pensating errors need to be investigated in future work.

— The “zero BC” run has profound negative effects

over the whole continental area of NA during winter
(Fig. 16e), while the effects are smaller during summer
(Fig. 16f), especially over the southern coast, due to the
relatively higher importance of photochemical forma-
tion of ozone during summer.

The error characteristics of the daily maximum 8h
rolling mean (DM8h, Fig. 10) resemble those of the
daylight base case (Fig. 6, left column), but reduced in
magnitude during winter, with almost null variance er-
ror and the same sign of the bias as the base case. The
NA1, NA2, and NA3 standard deviations of the sum-
mer DM8h is of 7.6, 5.2, and 8.1 ppb and of 7.6, 6.5,
and 7 ppb for the model and the observations, respec-
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tively. The model variability is therefore in line with the
observed variability. The error of the DM8h for the sen-
sitivity runs is reported in Fig. S5.

— On a network-wide average, removing anthropogenic
emissions causes a RMSE increase of 25 % during sum-
mer and of 0% (10 % at 75th percentile) during winter
while a zeroing out of input from the lateral boundaries
causes a RMSE increase of 30 % during summer and of
180 % during winter (median values; Fig. 16).

The allocation of the error of the Chimere model for EU
varies greatly by subregion (Figs. 5, 11-15, and 17):

— The summer daylight RMSkse ranges between
20ppl¥ (EU1, 60% covariance and 20 % bias)
and 85pplF (EU3, 95% covariance). In EU3, the
nighttime bias of 75 % outweighs the covariance, as
seen in Fig. 11.

— Removing the anthropogenic emissions had almost no
effect on the covariance share of the MSE (if not a slight

reduction with respect to the base case in EU2 and EU3 —

and also during nighttime), indicating that the error in
the timing of the signal is in uenced not by the emis-
sions but rather by other processes. Moreover, the vari-
ance portion is left almost unchanged (1 ppb increase in
EU1 and EU2), in contrast to the CMAQ results for NA.
This would indicate that the variability of ozone concen-
tration is hardly in uenced by anthropogenic emissions
in Chimere. The bias is the error component most sensi-
tive to emissions reductions, especially in EU2 and less
soin EU3. This is in line with the discussion of the daily
pro les of Fig. 2b (which showed similar shapes of for
the “zero emi” and of the “base” pro les) and contrasts
with the NA case where the “zero emi” daily pro les are
atter than the base case.

— The effect of imposing a constant ozone boundary con-
dition value of 35 ppb (and of zero for all other species)

www.atmos-chem-phys.net/17/10435/2017/
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Figure 10.As in Fig. 6 for the rolling average daily maximum 8 h ozone time series.

has a net small effect on the variance of the ozone er-
ror but signi cantly reduces the covariance share of the
error in favour of the bias (Figs. 5 and 14). The total
MSE is similar to that of removing the anthropogenic
emissions as far as the total MSE and the bias of EU2
are concerned. It outweighs the latter for the total MSE,
bias, and variance in EU3 and covariance and nighttime
bias component in EU1. We can infer that the variability
of the boundary conditions has a signi cant role in de-
termining the timing of the ozone signal in EU1 (close
to the western boundary of the domain) as the correla-
tion coef cient degrades from 0.89 (base case) to 0.66
(“const BC") (Figs. 5, 11, and 14). The bias staying the
same in EU1 daylight summer depends on the magni-
tude of the constant value (35ppb were chosen here)
that is in close agreement with that of the base case
while the small variance error (2 ppb) vanishing with
respect to the base case might be explainable with nu-
merical compensation.

During summer in EU2 and EU3 changing the ozone
boundary condition only inuences the bias with
marginal impacts on variance and covariance, while in
winter (Fig. 14) there is also a signi cant reduction of
the correlation coef cient, meaning that the boundary
conditions modulate the timing of the signal. This also
implies that the variability of the boundary conditions
becomes more important in winter.

— EU3 deserves special consideration as the RMSEmi

is approximately the same as the RMgad which
mostly consists of covariance error during daylight and
bias error during nighttime (Fig. 5e). Due to the local
topography, EU3 is typically characterised by stagnant
conditions that are dif cult to model. For example, 50 %
of the observed wind speed is below 1.65 m,swhile
Chimere predicts 1.95m$. The largest impact on the
total MSE is seen in the “const BC” run and arises in
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Figure 11.Chimere MSE breakdown for summer and winter for the base case (hourly time series of 0zone) and sensitivity simulations over
EU. The error coef cientsp, Fy, andF¢ are reported on the left axis, the total MSE (Ppbn the right axis (red triangles). T and

signs within the bias and variance portions of the errors indicate model over- and underprediction of mean concentration or variance,
respectively. The values in the covariance portion indicate the correlation coef cient between modelled and observed time series. Results are
provided separately for daytime and nighttime.

Figure 12.As in Fig. 11 for the hourly time series of “20 % reduction” scenario

the bias portion, pointing to the importance of properly
characterising background (regional) concentrations.

cesses could be responsible for the lack of variability in
Chimere, from emission to chemistry to transport. The
error of the DM8h for the sensitivity runs is reported in

— With respect to the base case, the DM8h (Fig. 15) shows Fig. S6.

a reduced share of the covariance error with respect to
the mean ozone (Fig. 11) at the expense of an increase
in variance error; the timing error is now shifted towards

— On a network-wide average, removing anthropogenic
emission causes an RMSE increase of 21 % during sum-
mer and 12 % during winter (median values; Fig. 17c,

seasonal timescales. The variability of the DM8h is gov- d).
erned by synoptic processes which are likely responsi-
ble for the variability error of the DM8h. The EU1, EU2,  — The effect of setting the dry deposition velocity of ozone

and EU3 standard deviations of the summer DM8h is
of 3, 6.2, and 8.6 ppb and of 6, 11, and 10.2 ppb for

to zero (July only, Fig. 5) increases not only the bias er-
ror but also the variance and covariance shares of the

the model and the observations, respectively. The model
therefore underestimates the observed variability (as in-
dicated by the “minus” sign in the variance share of the
error in Fig. 15) by up to 50% in EU1. A range of pro-

Atmos. Chem. Phys., 17, 10435-10465, 2017

error. Thus in Chimere the deposition not only acts as
a shifting term on the modelled concentration but also
in uences the variability and timing of ozone more pro-
foundly than for the CMAQ case examined earlier.
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Figure 13.As in Fig. 11 for the hourly time series of “zeroed anthropogenic emissions” scenario.

4 Timescale error analysis and diagnostic slow variability of the non-zero bias throughout the investi-
gated period that acts as a slow envelop modulation of the
The focus of this section i& Oz, the time series of the devi- error at shorter timescales. Such a process is more evident in
ation between the base case and observations. The nature A1 and NA2 and its magnitude is 1 order of magnitude (or
1 Oz is examined for time—frequency patterns using waveletmore) higher of the 90th percentile value.
analysis and for error persistence using autocorrelation func- NA3 and to a lesser extent NA2 show a high spectral power
tions (ACFs). The causes &fO3 are also tentatively investi-  of the error for periodicities of 1-2 months and lasting from
gated as dependencies on other elds using multiple regresdanuary to May with a weaker wake extending up to the end
sion analysis combined with bootstrapping to sample the rel-of the year, potentially pointing to errors in the characteri-

ative importance of the regression variables. sation of larger-scale background concentrations associated
with boundary conditions. NA3 also exhibits a high spectral
4.1 Spectral considerations power for errors associated with a periodicity oR0 days

during January—February and June-July antb days dur-

The coef cients of the ACFs (Appendix A) can be inter- ing Qctoberand December._This may point_to errors i_n repre-
preted as the Fourier transform of the power spectral denSenting the effects of changing weather regimes on simulated
sity. Frequency analysis of a signal is often performed by0ZOne concentrations. o .
constructing the periodogram (or spectrogram: see e.g. Chat- Except for the long-term variations of the model error with
eld, 2004). This approach has proven useful when dea”ngperiodicities greater than 2 months discussed above, NAL is
with harmonic processes superimposed on a baseline signifi€ only subregion that shows only weak power associated

(Mudelsee, 2014) but, at the same time, periodograms ofteMith model errors of shorter periodicities from June to De-
contain high noise. Therefore, examining a signal at speci C_cember. This suggests that uctuations caused by variations

frequencies can be instructive, for instance by resorting to" large-scale background and changing weather patterns are
wavelet transform, which has the further advantage of en_betFer captured in this region compared to the other two sub-
abling a 3-D time—frequency—power visualisation. Compared ©9!0NS. . _ . . o
to a power spectrum showing the strength of variations of the 1€ energy associated with the daily error is again higher
signal as function of frequencies, wavelet transformation alsg®d more pronounced in NA3 than in the other subregions,
allows the allocation of information in the physical time di- Where it is most pronounced during summer (NA1) or be-
mension other than phase space. Here, wavelet analysis of tf@€en March to October (NA2). While during winter and au-
periodogram of season&lOs is performed using the Morlet  tumn the daily error is likely driven by dif culties in repro- -
wavelet transform (Torrence and Compo, 1997). ducm_g stable PBL dynamlcs_, during spring and summer |_t is
From inspecting Fig. 18 (NA) it emerges that the highestalso in uenced by the Ch_e_mlcal produ_ct|0n an_d (_Jlestru_ctlon
values of spectral energies fbiOs for the three subregions ©f 0Zone, a process entailing N@hemistry, radiation, bio-
(corresponding to the 99th percentile of the spectrum) are oh9eNIC €mission estimates, and chemical transformatloq, and
served for periods spanning the whole year (i.e. the intensityfus dif cult to disentangle from boundary layer dynamics.
keeps the same high value during the whole year and is assdYavelet plots of the ozone error for periods between 12h
ciated with a periodicity higher than 300 days). These high nd 6 days are reported in Figs. S7 and S8, allowing us to
values of the energy spectrum are likely associated with th&€tter identify the periods (and/or the periodicity) affecting

www.atmos-chem-phys.net/17/10435/2017/ Atmos. Chem. Phys., 17, 10435-10465, 2017



10448 E. Solazzo et al.: Advanced error diagnostics of the CMAQ and Chimere modelling systems

Figure 14. As in Fig. 11 for the hourly time series of the “constant boundary conditions” scenario.

Figure 15.As in Fig. 11 for the rolling average daily maximum 8 h ozone time series.

the error of the fast uctuations, e.g the daily error in NA3 timescales (also considering that the higher level modelled
(all year) and the high energy spot towards the end of Aprilby Chimere is well below the tropopause and that vertical
in NA2 with a periodicity of 6 days and above, that could uxes are those prescribed by the C-IFS model). Errors in the
be associated with an ozone episode, but analysis of episodésogenic emissions also remain a plausible cause of ozone er-
is beyond the scope of this investigation. ror during spring and summer months.

For the EU (Fig. 19) a notable feature is the very high The similarity of the wavelet spectra for NA3 (Fig. 18c)
daily error energy in EU3 that is present throughout the yearand EU1 (Fig. 19a) (both regions are located on the western
and most pronounced in summer. Such high energy suggestxige of their domain) at the beginning of the year for periods
persistent problems in representing processes having a pef 1 to 2 months might be indicative of the periodicity of
riodicity of 1 day. Further, EU3 shows an area of high en-the bias induced by the boundary conditions. Compared to
ergy associated with a period of 1 to 2 months and extendCMAQ, the error of the Chimere model is more concentrated
ing from February, peaking in April and May, and ending in during spring and early summer, with a periodicity of 10—
September (mostly model underestimation; Fig. 19c), while20 days.
the error of the winter months in EU3 receives high energy Having identi ed some relevant timescales for thés
from slower processes, acting on timescales & months  error, in the next sections methods are proposed for its detec-
and beyond. Considering that the EU3 region is surroundedion and quanti cation.
by high mountains, tropopause folding (e.g. Bonasoni et al.,

2000; Makar et al., 2010) together with the lack of modelling
mechanisms for the tropopause/stratosphere exchange could
offer an explanation of the high energy of the error at long
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Figure 16. (a, b) Spatial maps of RMSE (in ppb) for the base cdsed) Percentage RMSE changes for the zeroed emissions case with
respect to the base cage, f) Percentage RMSE changes for the zeroed boundary condition case with respect to the bésecajdinter
months (DJF)(b, d, f) summer months (JJA).

4.2 Temporal characteristics of the error of ozone ing process at the daily scale, possibly related to radiation
and/or PBL-related variables. While the presence of a daily
In a recent study, Otero et al. (2016) analysed which synoptigeriodic forcing due to the deterministic nature of day—night
and local variables best characterise the in uence of largedifferences superimposed on the baseline ozone is expected,
scale circulation on daily maximum ozone over Europe. Thethe periodicity maintained in the error structure is not and
authors found the majority of the variance during spring overdeserves further analysis.
the entire EU continent is accounted for in the 24 h lag au- The PACF plots con rm that the error is not simply due
tocorrelation while during summer the maximum temper-to propagation and memory from previous hours but rather
ature is the principal explanatory variable over continentalarises at 24 h intervals and hence stems from daily processes.
EU. Other in uential variables were found to be the relative On average, for NA cor(Oz.h/, 1 Oz.h C V) (i.e. the cor-
humidity, the solar radiation, and the geopotential height. Carelation betweerd Os.h/ and1 Oz.h C V) is  0.45, while
malier et al. (2007) and Lemaire et al. (2016) found that thethe corr@ Os.h/, 1 O3.h C 24/)  0.68, for any given hour
near-surface temperature and the incoming short-wave radif. Similarly for EU, corr@ Oz.h/ and1 Oz.h C V) ranges
ation were the two most in uential drivers of ozone uncer- between 0.31 (EU2) and 0.54 (EU3), while car@s.h/,
tainties. 1 03.h C24/) 0.70 for all subregions. Thus, the ozone er-
The ACFs and PACFs (partial autocorrelation function) of ror with a 24 h periodicity has a longer memory than the error
1 O3 (see Appendix A for a de nition of both functions) re- With a 1 h periodicity. Since the 24 h periodicity of the error
veal a strong periodicity for periods that are multiples of 24 his present in the entire annual time series, the periodic error is
(Figs. 20 and 22) (note that the rst derivativebDzisused  notassociated with particular conditions (e.g. stability) but is
in this analysis to achieve stationarity). The structure of therather embedded into the model at a more fundamental level.
error is such that it repeats itself with daily regularity, indicat- Moreover, similar periodicity is observed for
ing either a systematic error in the model physics or a miss-
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Figure 17. (a, b) Spatial maps of RMSE (in ppb) for the base cdsed) Percentage RMSE changes for the zeroed emissions case with
respect to the base cage, f) Percentage RMSE changes for the constant boundary condition case with respect to the bdaeaase.
e) Winter months (DJF)(b, d, f) summer months (JJA).

— the ACF analysis repeated for the “zero emi” scenario (Fig. S12). These stations have been selected by looking

(Fig. S9); at the locations where isoprene emissions accumulated
over the months of June, July, and August as provided
- ?;ieg Ascig).of 1WS and 1 Temp for both models by the two models analysed here.

_ the ACF of primary species (PM for EU and CO for In gll cases, t.he error has.a marked daily s'tructure, strength-
ening the notion that a daily process affecting several model

NA) (Fig. S11); ) .

modules is not properly parameterised. The error due to

— the ACF of ozone error for the “zero emi” scenario chemical transformation at daily scale is screened out by the
at three stations where isoprene emissions are lowdaily periodicity of the ACF of the primary species, while
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Figure 18. Annual time series of differences between CMAQ and obsernyg @3, top portion of each panel) and Morlet wavelet analysis

of the periodogram ot O3z (lower portion of each panel) for the three NA subregions. Black contours lines identify the 95% con dence
interval. The period (in days) is reported in the vertical axis, while the quantiles of the power spectral density are measu?ecﬂ'l’lheppb
scale reports the quantiles of the power spectrum.)

the daily periodicity of the zeroed emission scenario allowsand partially NA1, NA2) or uctuating (NA3, EU3) correla-
the reinforcement of the claim that the PBL dynamics is thetion values. The PACF plots in Figs. 21 and 23 suggest that
most probable cause of the error. some signi cant correlation persists up to40 h, likely due
Since the individual daily processes directly or indirectly to leakage from the removed diurnal component. As exten-
affecting the PBL dynamics cannot be untangled, here “PBLsively discussed in several earlier works, the KZ lter does
error” is meant to encompass errors in the representation ofiot allow for a clear separation among components and thus
the variables affecting boundary layer dynamics (i.e. radi-some leakage is expected (see e.g. Galmarini et al., 2013;
ation, surface description, surface energy balance, heat exSolazzo et al., 2017). The amount of overlapping variance
change processes, development or suppression of convectiobetween the isolated diurnal uctuations and the remainder
shear generated turbulence, and entrainment and detrainmeot the time series is of 4—9 %.
processes at the boundary layer top for heat and any other The relative strength of the MSE for the undecomposed
scalar) and their non-linear interdependencies. ozone time series and for the ozone time series with the di-
By removing the diurnal uctuations (i.e. by screening out urnal uctuations removed and with only the diurnal uctu-
the frequencies between 12 h and up t&.5 days by means ations is reported in Table 1. With the exception of NA1 and
of the Kolmogorov—Zurbenko (KZ) Iter, as described in EU3, the baseline error (denoted with “noDU") accounts for
Hogrefe et al., 2000) from the modelled and observed time 70 to 85 % of the total error, while the diurnal uctuations
series, the daily structure of the ACF disappears (Figs. 21)(denoted with “DU”) are responsible for 10 to 23 % of the
and 23), replaced by a slow decay and negative (EU1, EU2otal error (and even less during nighttime). The “DU” er-
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Figure 19. Same as in Fig. 18 for Chimere over the three EU subregions.

ror outweighs the “noDU” error (67 % to 26 %) only in EU3, To perform this analysis, the modelled and observed ozone
where the daily PBL issue has been pointed out in the previtime series are rst Itered to isolate the diurnal component

ous section. using a KZ lter. Then, the cross covariance between the two
_ _ _ time series is calculated. The time at which the maximum
4.3 Covariance error: phase shift of the diurnal cycle covariance value occurs is taken as the phase shift between

Thi . | h fth . hi r%he two signals. The method has an error &5 h.
Is section explores the nature of the covariance error which -, NA, the modelled diurnal peak occurs 1-2 h earlier than

oceurs, z?jmong oth_er rﬁasons_i_,hwhen thz two si%nals bein@he observed diurnal peak at many stations and up to 3-4h
compared are not in phase. The rst and second momenty jier ot some Canadian stations. By taking into considera-
of the error distribution are invariant with respect to a phasey; ;. the 0.5 h error of the estimate. the receptors at the west-
S?'f:] bet_weeln thg t\r/1vo S|gn?IsC$Mu;prr11y, 199?; I-€. thg ?eanern border (approximately corresponding to NA3) are least
of the S'g?]a and the ?mp itude o ';re OSdC|bat|onshW|t rﬁffaffected by this timing error (especially in summer Fig. 24b),
spect to the mean value are not affected by a phase shifty\y e refore the covariance share of the error shown in
which therefore does not have an impact on the bias and Valigig 4 is not due to daily phase shift in this region but proba-
ance compqnents 0:; tge erlror. Tge .corr:alanog cgef clent, In bly due to the shifting of longer (or shorter) time periods in-
contrast, Is impacted by a lagged signal, producing a net ing; e for example by errors in transport (wind speed and/or

crease of the'covarlance error. ) direction). Figure S13 in the Supplement reports the same
The analysis of the phase lag between the daily COmponergmalysis repeated for the “zero emi” and “zero BC” runs.

of the modelled and observed cycles is reported in Figs. 24 Inthe EU (Fig. 25), no phase shift (or a phase shift compat-

g:ﬁ;;?gly% (EU). while winter and summer are analysedible with the 0.5 h estimation error) is observed in Romania,
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Figure 20. CMAQ model: autocorrelation (ACF) and partial autocorrelation (PACF) functions for the differenced time series of residuals
of ozone (model-observations). The differentiation is necessary to remove non-stationarity and thus to convey the ACF and PACF values
depending on lag only.

Figure 21. As in Fig. 20 for the differenced time series of residual of ozone obtained by ltering out the diurnal uctuations from the
modelled and observed time series.
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Figure 22. Chimere model: autocorrelation (ACF) and partial autocorrelation (PACF) functions for the differenced time series of residuals
of ozone (model-observations). The differentiation is necessary to remove non-stationarity and thus to convey the ACF and PACF values
depending on lag only.

Figure 23. As in Fig. 22 for the differenced time series of residual of ozone obtained by Itering out the diurnal uctuations from the
modelled and observed time series.
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Table 1. MSE (ppl#/ of the full, undecomposed ozone time series (FT) and relative fraction of MSE of the time series derived by Itering
out the diurnal uctuations (noDU) and of the time series derived by keeping only the diurnal uctuations (DU). The diurnal signal has been
isolated by applying a Kolmogorov—Zurbenko Iter KZ(13,5). The relative fraction of noDU and of DU does not add up to 100 % because
the Iter allows some leakage to the nearest frequencies (see Hogrefe et al., 2000, and Solazzo and Galmarini, 2016, f¢a)d€tsils).

(b) EU.

(@) NA1 \ NA2 \ NA3 \ Continent
FT(ppl?) noDU DU | FT(ppl¥) noDU DU | FT(pp¥) noDU DU | FT(ppl¥) noDU DU
CMAQ MSE — summer
2865 40% 41%| 4912 70% 23%| 7935 84% 13%| 2825 56% 29%
CMAQ MSE — winter
86.08 94% 5% 19.27  75% 21%| 61.67 74% 21%| 2238 85% 9%
(b) EU1 \ EU2 \ EU3 \ Continent
FT(ppl?) noDU DU | FT(pp¥) noDU DU | FT(pp¥) noDU DU | FT(ppl¥) noDU DU
CHIMERE MSE - summer
2091 85% 10%|  46.19 78% 15%| 12586 26% 67% 2695 76% 18%
CHIMERE MSE — winter
20.87 85% 12%) 19.95 85% 10%| 3991 38% 59%) 1134  73% 16%

Germany, or the UK during winter, while a signi cant phase
shift (the modelled peak occurs up to 6 h early) is observed in
the north of Italy and Austria, with France and Spain oscillat-
ing between positive 3 (model delay up to 5 h in the south of
Madrid) and negative 5 and 6 h phase shifts, with the net ef-
fect of a spatially aggregated daily cycle that is in phase with
the observations (Fig. 3b). During summer the phase shift
is larger and extends also to the countries where the phase
shift was null during winter. Moreover, some country-wise
grouping can be detected, as for example at the border be-
tween Belgium and France, Spain and France, and Finland
to Sweden, possibly due to the different measurement tech-
nigues and protocols among EU countries (e.g. Solazzo and
Galmarini, 2015). Figure S14 in the Supplement reports the
same analysis repeated for the “zero emi” run. The differ-
ence between the time shift of the base case and the zeroed
emission scenario (Fig. S15) reveals the effects of the tim-
ing of the anthropogenic emissions on the covariance error.
The effect is null over EU (median value of the difference of
zero) and is very limited in NA (median value of zero during
summer and of 1 during winter), reinforcing the conclu-

sion that the timing of the emissions is not responsible for
Figure 24. Phase shift of the diurnal cycle (in hours). A positive (or contributes Ver)glllittle to) the daily error P

phase shift indicates that the model peak is “late”, while a negative . . .. .
q While errors in emission pro les obviously can be one

phase shift indicates that the modelled peak precedes the observe - 8
peak. This analysis includes urban and suburban stations in additiof@USe of the phase shift and thus the covariance error of the

modelled ozone signal, the representation of boundary layer
processes clearly can be a factor as well. As discussed in e.g.
Herwehe et al. (2011), the parameterisation of vertical mix-
ing during transitional periods of the day can cause a time
shift in the modelled ozone concentrations due to its effects

to rural stations.
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Figure 25.As in Fig. 24 for EU.

Figure 26. Normalised MSE produced by lagging the observed diurnal cycle with respect to itself. The MSE due to such a shift is entirely
due to covariance error. The plots are presented for @J8) and NA2(a, c) for the months of JJA. Pane(a, b) shows the impact of the

phase shift on the DU component, afed d) show results for the undecomposed time series (FT). For EU2, a shifg bfcauses an MSE

of 0.5 times the variance of the observations.

on the near-surface concentrations of N&hd ozone, which  magnitude var(obs) (in both EU and NA), where var(obs)

in turn affect the chemical regime and balance between ozonés the variance of the measured diurnal cycle (top panel). The

formation and removal. effect on the full (undecomposed) time series is that a phase
To quantify the importance of the covariance error causedag of 4 (EU) and 5-6 (NA) hour in the diurnal cycle

by a phase shift relative to other sources of error, Fig. 26causes a MSE error of magnitudevar(obs), where in this

shows the curves of normalised MSE as the observed ozonease the variance is that of the undecomposed time series of

time series is shifted with respect to itself betweelD and  ozone (lower panel).

10h. The MSE curve equals zero for a zero-hour lag and is Therefore, a modelled ozone peak that occurs 4 to 5 h too

symmetric with respect to the sign of the lag. Since this anal-early (a feature that is detected at some EU3 and Canadian

ysis compares the observed signal to itself (with varying de-stations) corresponds to a covariance error of 9.0 ppb (i.e.

grees of time lags), the MSE fraction of bias and variance isthe standard deviation of the network-average ozone observa-

zero while all of the MSE is due to the covariance. tions in summer in both EU and NA). This result also helps
The curves in Fig. 26 shows that a phase lag in the diurnakxplain the large covariance error in EU3, which can be at

cycle of 6h causes aMSE error in the diurnal component of
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Figure 27. Percentage of variance explained by the regressors (theRétfdr the regression is reported in the title of each panel). The
relative importance of each variable is assessed by using a bootstrap resampling. The plots at the bottom show the ACF and PACF of the
yearly time series of residual of the t, i.e. the portion of the ozone time series that was not captured by the linear regressions on the available
variables. The analysis encompasses 47 co-located stations (the NA stations for ozpné/3\@nd Temp that fall in a radius of 1000 m

and vertical displacement less than 250 m).

least partially attributed to the large phase shift of the dailywhere ; are the coef cients of the multiple linear regres-

cycle. sion, and the intercefitis the portion of the ozone error not
o explainable by any of the regressors. A bootstrap analysis
4.4 Explaining the error of ozone (Mudelsee, 2014; Groemping, 2006) is used to calculate the

. i i . ) relative importance of each error eld in explaining the vari-
In this section a simple linear regression model for the er-5,.a o1 Os (Figs. 27 and 28) with an uncertainty of5 %.
ror of ozonel Os is applied with the goal of detecting the hg analysis is restricted to stations of 0zone N®'S, and
causes of model errors on the daily and longer-term scale§gmy that are located within a maximum horizontal distance
!dentl ed in thg previous section. Although a_Imear model ot 1000 m and maximum vertical displacement of 250 m, to
is overly simplistic and other methods are available (e.g ker-50id error due to spatial heterogeneity. The number of sta-
nel smoothers), we employed the simpler approach (i) SinC&ions is 61 in EU and 45 in NA.
it is not the aim of this study to build a statistically accurate  The errors of temperature and wind speed explain about

model for the model error and (ii) by pursuing simple rea- 5 hirg of the daylight winter ozone error of CMAQ, while
soning we hope to identify the timescale of the error and the 20% of the ozone error variability during daylight sum-

mostlikely elds causing it at that timescale. More advanced e 70ne is associated with the error in temperature and, to
techniques are likely to overcomplicate the results and their, |ogger extent, wind speed (Fig. 27). In contrast, in Chimere
interpretations but could be pursued in future studies. the NO and N@ error over EU during winter is correlated
The available regressors (explanatory variables) are the efih the error of 0zone, especially during nighttime (Fig. 28).
rors of the variables for which measurements have been colgyera), there is no instance where the variance explained by
lected within AQMEII, i.e. NO (EU only), N@, Temp, and ¢ gyailable variables (quanti ed through the coef cient of
WS: determinationR?/ exceeds 0.45 (corresponding to a linear
correlation coef cient of 0.67). The ACFs of the residuals
of the regression show that there is an overwhelming daily
memory of the error that can only partially be attributed to er-

103D 3;1NOC 21NO2;C 31TempC 41WSCKk; (3)
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Figure 28. Same as Fig. 27 for EU. The analysis encompasses 61 co-located stations (the EU stations for ozone, M3, d6d Temp
that fall in a radius of 1000 m and vertical displacement less than 250 m).

rors of the available regressor variables, pointing to the needhe t propagates with daily recurrence and is not explained
to include additional variables in future applications of this by the available variables, stressing the ndings of the previ-
regression analysis. ous section and again pointing to PBL-related errors.

A straightforward limitation of Eq. (3) is that it assumes  However, since we are not in a position to estimate the er-
that successive values of the error terms are independentors associated with PBL variables (radiation, temperature,
while in practice this is not the case. Table 2 reports the correturbulence), an alternate approach is to Iter out the diurnal
lation coef cient of the diurnal uctuations of the residuals, process from the modelled and observed time series and re-
obtained by Itering out uctuations faster than 1.5 days  peat the analysis based on Eq. (3) (Figs. S16 and S17). The
from the measured and observed time series (for the analyeorrelation coef cients of the residuals with the diurnal com-
sis of Table 2 the co-location restriction on the rural recep-ponent ltered out are reported in Table 3. The collinearity
tors is removed to allow spatial considerations, the only con-has been largely removed, especially for NA, while for EU
straint is on the the vertical displacement among stations t@some strong correlation persists O, and1 NO, and be-
be less than 250 m). Several signi cant collinearities can betweenl WS andl Temp in winter).
detected (e.g betwednWS andl Temp and betweeh NO, TheR? of the regression for the “no-DU” case drops dras-
andl Temp, especially in winter). tically in NA, while keeping approximately the same values

In addition to the collinearity issue, there are other en-in EU (but in EU3R? does not exceed 0.10; not shown) as
dogenous variables that are not part of the regression analysghown in Figs. S16 and S17. Moreover, this analysis and its
but whose error contributes to tothlO3, as revealed by the comparison to the results presented in earlier sections lead to
ACFs and PACFs of the rst-order differentiated residuals of the following conclusions:
the regression, reported in the last panels of each plot. Such
missing variables are likely to correlate with both the de-
pendent { Os/ and the explanatory variables. For instance,
errors in the cloud cover and/or radiation scheme, land use — This error manifests itself in the correlation coef cient
masking, etc. are shared by the chemical species (ozone and and thus is due to a variance/covariance type of error
its precursors) as well as by the meteorological elds. The (otherwise, if it was a bias-type error, tRé would have
ACFs and PACFs suggest that the common omitted error of ~ been similar between the analysis of the signal with and

without the diurnal component).

— A strong daily error component is common to all vari-
ables investigated here.
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Table 2. Linear correlation coef cient between the diurnal residuals of the regressors of Eq. (3). The residuals are calculated by removing
uctuations faster the 1.5 days from the measured and modelled time series. All the correlation values are signi cant up to 1 % signi cance
threshold(a) NA; (b) EU. For each set of variables, the regression analysis includes the rural stations within a maximum differential altitude

of 250 m.

@)

Correlation among diurnal components of residuals

1NO» \ 1 Temp \ 1Ws
NA1 NA2 NA3 \ NA1 NA2 NA3 \ NA1 NA2 NA3
SUMMER
1NOy 1 1 1 0.6 0.23 0.65 0.19 0.46 0.26
1 Temp 0.6 0.23 0.65 1 1 1 0.62 0.53 0.7
1wWs 0.19 0.46 0.26 0.62 0.53 0.7 1 1 1
WINTER
1NO» 1 1 1 0.63 0.57 0.56 0.55 0.05 0.19
1 Temp 0.63 0.57 0.56 1 1 1 0.63 0.47 0.35
1wWs 0.55 0.05 0.19 0.49 0.47 0.35 1 1 1
(b) Correlation among diurnal components of residuals
1NO \ 1NO; \ 1 Temp \ 1ws
EU1 EU2 EU3 \ EU1 EU2 EU3 \ EU1 EU2 EU3 \ EU1 EU2 EU3
SUMMER
1NO 1 1 1 0.05 0.68 0.48| 0.08 0.05 0.27 0.07 0.11 0.02
1NO> 0.05 0.68 0.48 1 1 1 0.57 0.18 0.27 0.51 0.38 0.26
1Temp  0.08 0.05 0.27 057 0.18 0.27 1 1 1 0.81 0.63 0.21
1Ws 0.07 0.11 0.02 051 0.38 0.26| 0.81 0.63 0.21 1 1 1
WINTER
1NO 1 1 1 0.31 0.6 0.73| 0.02 0.52 0.62 0.03 0.12 0.06
1NO» 0.31 0.6 0.73 1 1 1 0.13 0.7 0.7 0.01 0.09 0.11
1 Temp 0.02 0.52 0.62 0.13 0.7 0.7 1 1 1 048 0.02 0.01
1Ws 0.03 0.12 0.06 0.01 0.09 0.11) 0.48 0.02 0.01 1 1 1

— By inspecting the “no-DU” case, at least in NA 5 Discussions
(Fig. S16), the bias error discussed in Sect. 3 cannot be
explained simply in terms of the elds NOTemp, and  The application of several diagnostic techniques in conjunc-
WS. Hence, the bias of the CMAQ model over the NA tion with sensitivity scenarios has allowed in-depth analysis
continent appears to be associated with processes withf the timescale properties of the ozone error of CMAQ and
longer timescales (i.e. longer than daily), such as boundChimere, two widely applied modelling systems. The main
ary conditions (inducing mostly bias error, as discussedresults, as stemming from various aspects of the investiga-
in Sect. 3), deposition, and/or transport (potential sys-tion, are that the largest share of MSE70-85 %)) is associ-
tematic errors in wind direction, for example, would ated with uctuations longer than the daily scale and mostly
likely produce a bias-type error). due to offsetting error in NA and due to covariance error in
EU, while the remaining MSE is due to processes with daily
f ! ‘ variation. The causes of the long-term error need to be sought
mostly daylight) and oft WS in EU1 (and partially jn the elds that produce (mainly) a bias type of error such
EU2) on the error of ozone (not shown) is similar with 55 emissions, boundary conditions, and deposition for NA,
and without the diurnal uctuations, indicating cross hjle the time shift of the slow uctuations in EU is possibly
correlation of these error elds for periods longer than gye to timing error of the synoptic drivers or other synoptic
1 day. processes.

By excluding other plausible causes, and assuming that
observational data are “correct” (not affected by systematic
errors), we can conclude based on multiple indicators that
the dynamics of the boundary layer (which in turn depend on

— The impact ofl NO2 and1 NO in EU (all subregions,
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Table 3. Linear correlation coef cient between the residuals of the regressors of Eq. (3), when the diurnal uctuations are ltered out.
The residuals are calculated by removing uctuations faster tlie5 days. All the correlation values are signi cant up to 1 % signi cance
threshold from the measured and modelled time sef@$NA; (b) EU. For each set of variables, the regression analysis includes the rural

stations within a maximum differential altitude of 250 m.

@)

Correlation among residuals (diurnal uctuations removed)

1NO» \ 1 Temp \ 1Ws
NA1 NA2 NA3 \ NA1 NA2 NA3 \ NA1 NA2 NA3
SUMMER
1NOy 1 1 1 0.2 0.02 0.26 0.06 0.05 0.19
1 Temp 0.2 0.02 0.26 1 1 1 0.28 0.09 0.42
1wWs 0.06 0.05 0.19 0.28 0.09 0.42 1 1 1
WINTER
1NO» 1 1 1 0.12 0.42 0.03 0.02 0.16 0.11
1 Temp 0.12 0.42 0.03 1 1 1 0.54 0.34 0.13
1wWs 0.02 0.16 0.11 0.54 0.34 0.13 1 1 1
(b) Correlation among residuals (diurnal uctuations removed)
1NO \ 1NO2 \ 1 Temp \ 1Ws
EU1 EU2 EU3 \ EU1 EU2 EU3 \ EU1 EU2 EU3 \ EU1 EU2 EU3
SUMMER
1NO 1 1 1 0.22 0.71 0.69| 0.12 0.23 0.03 0.06 0.23 0.08
1NOy 0.22 0.71 0.69 1 1 1 0.27 0.41 0.11 0.54 0.43 0.01
1 Temp 0.12 0.23 0.03 0.27 0.41 0.11 1 1 1 0.44 0.22 0.36
1Ws 0.06 0.23 0.08 0.54 0.43 0.01 0.44 0.22 0.36 1 1 1
WINTER
1NO 1 1 1 0.21 0.64 0.46| 0.22 0.19 0.02 0.15 0.14 0.01
1NO» 0.21 0.64 0.46 1 1 1 0.09 0.38 0.35 0.07 0.2 0.08
1 Temp 0.22 0.19 0.02 0.09 0.38 0.35 1 1 1 0.37 0.1 0.38
1Ws 0.15 0.14 0.01 0.07 0.2 0.08 0.37 0.1 0.38 1 1 1

the representation of radiation, surface characteristics, sutthe periodicity of the error could be due to a combination of

face energy balance, heat exchange processes, developmentiltiple processes at speci ¢ sites. However, the absence of

or suppression of convection, shear generated turbulence spatial or emission dependence and the persistence of the

and entrainment and detrainment processes at the boundadgaily periodicity indicate that the main cause of the daily er-

layer top for heat and any other scalars) are responsible foror stems from PBL dynamics. Furthermore, the analogies of

the recursive daily error. The most revealing indicator is thethe time shift of the diurnal component of the base and zeroed

analysis of the ACF and PACF of the time series of ozoneemission cases suggest that the timing error (pure covariance

residuals that shows a daily periodicity: the 24 h errors areerror) is not caused by anthropogenic emissions (with the

highly associated throughout the year; i.e. the error repeatpossible exception of winter in NA where some small dif-

itself with daily regularity. This could be caused by multiple ferences are present).

processes occurring on a daily timescale, such as chemical

transformations, the timing of the emissions, and PBL dy-

namics. However, analyses of the error periodicity of primary

species (to exclude the role of chemical transformations) an® Conclusions

of the scenario with zeroed anthropogenic emissions (to ex-

clude the role of emissions) have shown the same error struckhis study is part of the goal of AQMEII to promote in-

ture, pointing to PBL processes as the main cause of dailynovative insights into the evaluation of regional air quality

error. models. This study is primarily meant to introduce evaluation
Due to the spatial aggregation of these analyses and theethods that are innovative and that move towards diagnos-

non-linearity of the models' components, it is possible thating the causes of model error. It focuses on the diagnostic of

the error produced by CMAQ and Chimere applied to calcu-
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late hourly surface ozone mixing ratios over North America
and Europe.

We argue that the current widespread practice (although
with several exceptions) of using time-aggregate metrics to
merely quantify the average distance (in a metric space) be-
tween models and observations has clear limitations and does
not help target the causes of model error. We therefore pro-
pose to move towards the quali cation of the error compo-
nents (bias, variance, covariance) and to assess each of them
with relevant diagnostic methods. At the core of the diagnos-
tic methods we have devised over the years within AQMEII
is the quality of the information that can be extracted from
model and measurements to aid understanding of the causes
of model error, thus providing more useful information to
model developers and users than can be gained from aggre-
gate metrics. Applying such approaches on a routine basis
would help boost the con dence in using models prediction
for various applications. At the current stage, the methods we
propose help identify the timescale of the error and its period-
icity. The step to link the error to speci ¢ processes can only
be reached by integrating the analysis with sensitivity model
runs. For instance, we can infer that the timing error of the
diurnal component is (at least partially) associated with the
dynamics of the PBL, but further analyses are necessary to
isolate the components of the PBL responsible for that error.

While remarking that the analyses carried out are not
meant to compare the two models but are rather meant to
show how the two models, applied to different areas and us-
ing different emissions, respond to changes, the main conclu-
sions of this study are as follows:

— While the zeroing/modi cation of input of ozone from
the lateral boundaries causes a shift of the ozone diurnal
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of this error into bias, variance, and covariance depends
on season and region. In general, the CMAQ model suf-
fers mostly from bias error (model overestimation dur-
ing summer and underestimation during winter), while
the Chimere model is rather “centred” (i.e. almost un-
biased) but suffers high covariance error (associated
with the timing of the signal and thus likely to synoptic
drivers).

— A recursive, systematic error with daily periodicity is

detected in both models, responsible for 10-20 % of the
quadratic total error, possibly associated with the dy-
namics of the PBL.

The modelled ozone daily peak accurately reproduces
the observed one, although with signi cant exceptions
in France, Italy, and Austria for Chimere and with the
exceptions of Canada and some areas in the eastern US
for CMAQ. Assuming the accurateness of the observa-
tional data in these regions, the modelled peak is antici-
pated by up to 6 h, causing a covariance error as large as
9ppb. The analysis suggests that the timing of the an-
thropogenic emissions is not responsible for the phas-
ing error of the ozone peaks but rather indicates that it
might be caused by the dynamics of the PBL (although
the role of biogenic emissions and chemistry cannot be
ruled out).

The ozone error in CMAQ has a weak/negligible depen-
dence on the error of NfOand wind speed, while the
error of NG impacts signi cantly the ozone error pro-
duced by Chimere. On timescales longer than 1.5 days,
the Chimere ozone error is signi cantly associated with
the error of wind speed and temperature.

cycle in both CMAQ and Chimere, the response of the Although having exploited several evaluation frameworks
two models to a modi cation of anthropogenic emis- gver the past 10 years within AQMEII (operational, diagnos-
sion and deposition uxes is very different. For CMAQ, tic, and probabilistic) the goal of clearly associating errors to
the effect of removing anthropogenic emissions causegrocesses has not yet been achieved. As already suggested
a shift and a attening of the diurnal curve (bias and in the conclusions of the collective analysis of the AQMEII3
variance error), while for Chimere the effect is restricted suite of model runs summarised by Solazzo et al. (2017), fu-
to a shift. In contrast, setting the ozone dry depositiontyre model evaluation activities would bene t from incorpo-
velocity to zero causes a shift (bias error) for CMAQ, rating sensitivity simulations and process speci ¢ analyses
while a profound change of the error structure occursthat help to disentangle the non-linearity of the many model
for Chimere with signi cant impacts on not only the variables, possibly by focusing on smaller modelling com-
bias but also the variance and covariance terms. munities. The “theory of evaluation” being put forward by
— The response of the models to variations in anthro-the hydrology modelli_ng communiFy (Nearing et al., 2016’_
pogenic emissions and boundary conditions show a pro—and _references _therem) may provide a _template for the_ ar
. ) . .quality community to further advance their model evaluation
nounced spatial heterogeneity, while the seasonal vari- h
ability of this response is found to be less marked. Onlyapproac es.
during the winter season does the zeroing of boundary

value_s for_ North America produce a spatially “”'f‘_’”T‘ Data availability. The modeling and observational data generated
deterloratlt_)n of the model accuracy across the malor'tyfor the AQMEII exercise are accessible through the ENSEMBLE
of the continent. data platform (http://ensemble.jrc.ec.europa.eu/) upon contact with
the managing organizations. References to the repositories of the

— Fluctuations slower than 1.5 days account for 70~ observational data used have been provided in Sect. 2.1.

85 % of the total ozone quadratic error. The partition
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Appendix A The PACF measures the excess of correlation between two
elements ofX.t/ lagged bys elements not accounted for

The ACF is derived by the autocovariance (ACV) and ex- by the autocorrelation of the intermediate 1 elements. In

presses the correlation of a time series with its lagged versiopther words, the ACF oK.t/ andX.t C s/ includes all the

(e.g. Chat eld, 2004): linear dependence between the intermedsatel lags. The
PACF allows us to investigate the direct effect of tamn the
ACV.kI DEf[X.t/ ][X.tCklI ]g lagt Cs.
D Cov[X .t/ X.t Ck/]l The advantage of using ACFs and PACFs is that they are a
ACF.k/ D ACV.k/=ACV.0/: function of the lagk only (and not of the speci c tim&. This
condition holds only ifX.t/ is stationary (i.e. its mean and
At any lagk, the ACV coef cientsck are given by variance do not change over time). Several tests are available
to checkX.t/ for stationarity (e.g. Chat eld, 2004). Differ-
1 Xk _ _ encing the time series is typically a way to achieve stationar-
c D N Xt XIXick X/ ity.
tD1

As usual, the autocorrelation coef cients are given by nor-
malisingck with cg.
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