A. C. Aiken, P. F. Decarlo, J. H. Kroll, D. R. Worsnop, J. A. Huffman et al., O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry, Environmental Science & Technology, vol.42, issue.12, pp.4478-4485, 2008.
DOI : 10.1021/es703009q

M. R. Alfarra, A. S. Prevot, S. Szidat, J. Sandradewi, S. Weimer et al., Identification of the Mass Spectral Signature of Organic Aerosols from Wood Burning Emissions, Environmental Science & Technology, vol.41, issue.16, pp.5770-5777, 2007.
DOI : 10.1021/es062289b

J. D. Allan, A. E. Delia, H. Coe, K. N. Bower, M. R. Alfarra et al., A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, Journal of Aerosol Science, vol.35, issue.7, pp.909-922, 2004.
DOI : 10.1016/j.jaerosci.2004.02.007

Y. Zhang, Field characterization of a PM 2.5 ACSM in eastern China

J. D. Allan, P. I. Williams, W. T. Morgan, C. L. Martin, M. J. Flynn et al., Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys, vol.105194, issue.10, pp.647-668, 2010.

M. Bae, K. L. Demerjian, and J. J. Schwab, Seasonal estimation of organic mass to organic carbon in PM2.5 at rural and urban locations in New York state, Atmospheric Environment, vol.40, issue.39, pp.7467-7479, 2006.
DOI : 10.1016/j.atmosenv.2006.07.008

C. Bozzetti, I. Haddad, D. Salameh, K. R. Daellenbach, P. Fermo et al., Organic aerosol source apportionment by offline-AMS over a full year in Marseille, Atmos. Chem. Phys, vol.175194, issue.10, pp.8247-8268, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01656083

S. H. Budisulistiorini, M. R. Canagaratna, P. L. Croteau, K. Baumann, E. S. Edgerton et al., Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Meas. Tech, vol.75194, issue.10, pp.1929-1941, 1929.

M. R. Canagaratna, J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra et al., Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrometry Reviews, vol.5, issue.187, pp.185-222, 2007.
DOI : 10.1080/10473289.2002.10470813

F. Canonaco, M. Crippa, J. G. Slowik, U. Baltensperger, and A. S. Prévôt, SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmospheric Measurement Techniques, vol.6, issue.12, pp.3649-3661, 2013.
DOI : 10.5194/amt-6-3649-2013-supplement

A. Chakraborty, D. Bhattu, T. Gupta, S. N. Tripathi, and M. R. Canagaratna, Real-time measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods, Journal of Geophysical Research: Atmospheres, vol.15, issue.3, pp.9006-9019, 2015.
DOI : 10.5194/acp-15-1331-2015

Y. Cheng, G. Zheng, C. Wei, Q. Mu, B. Zheng et al., Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, vol.2, issue.12, 2016.
DOI : 10.1126/sciadv.1601530

B. Chu, X. Zhang, Y. Liu, H. He, Y. Sun et al., Synergetic formation of secondary inorganic and organic aerosol: effect of SO 2 and NH 3 on particle formation and growth, Atmos. Chem. Phys, vol.165194, issue.10, pp.14219-14230, 2016.

V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich et al., Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments, pp.5063-5087, 2015.

A. J. Ding, X. Huang, W. Nie, J. N. Sun, V. M. Kerminen et al., Enhanced haze pollution by black carbon in megacities in China, Geophysical Research Letters, vol.15, issue.10, pp.2873-2879, 2016.
DOI : 10.5194/acp-15-2969-2015

H. Dong, L. Zeng, M. Hu, Y. Wu, Y. Zhang et al., Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China, Atmos. Chem. Phys, vol.125194, issue.10, pp.10519-10533, 2012.

H. Du, L. Kong, T. Cheng, J. Chen, J. Du et al., Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols, Atmospheric Environment, vol.45, issue.29, pp.5131-5137, 2011.
DOI : 10.1016/j.atmosenv.2011.06.027

M. Elser, R. Huang, R. Wolf, J. G. Slowik, Q. Wang et al., New insights into PM 2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + ? Ca, Atmos. Chem. Phys. Atmos . Chem. Phys, vol.165194, issue.7, pp.3207-3225, 2007.

R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco et al., ACTRIS ACSM intercomparison ? Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers, pp.2555-2576, 2015.

X. Ge, Q. Zhang, Y. Sun, C. R. Ruehl, and A. Setyan, Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime, Environmental Chemistry, vol.9, issue.3, pp.221-235, 2012.
DOI : 10.1071/EN11168

E. R. Gibson, P. K. Hudson, and V. H. Grassian, Physicochemical Properties of Nitrate Aerosols:?? Implications for the Atmosphere, The Journal of Physical Chemistry A, vol.110, issue.42, pp.11785-11799, 2006.
DOI : 10.1021/jp063821k

A. Goodman, G. Underwood, and V. Grassian, A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles, Journal of Geophysical Research: Atmospheres, vol.24, issue.85, pp.29053-29064, 2000.
DOI : 10.1029/97GL01287

S. Guo, M. Hu, M. L. Zamora, J. Peng, D. Shang et al., Elucidating severe urban haze formation in China, Natl. Acad. Sci. USA, pp.17373-17378, 2014.
DOI : 10.1029/2010JD014566

URL : http://www.pnas.org/content/111/49/17373.full.pdf

P. L. Hayes, A. M. Ortega, M. J. Cubison, K. D. Froyd, Y. Zhao et al., Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign, M., and Jimenez, J. L.: Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign, pp.9233-9257, 2013.
DOI : 10.1016/S1352-2310(99)00186-7

H. He, Y. Wang, Q. Ma, J. Ma, B. Chu et al., Mineral dust and NOx promote the conversion of SO 2 to sulfate in heavy pollution days, 2014.

W. Hu, P. Campuzano-jost, D. A. Day, P. Croteau, M. R. Canagaratna et al., Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species, Atmospheric Measurement Techniques, vol.10, issue.8, pp.2897-2921, 2017.
DOI : 10.5194/amt-10-2897-2017-supplement

W. Hu, P. Campuzano-jost, D. A. Day, P. Croteau, M. R. Canagaratna et al., Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species, Aerosol Science and Technology, vol.51, issue.6, pp.735-754, 2017.
DOI : 10.1080/02786826.2016.1241859

W. W. Hu, M. Hu, B. Yuan, J. L. Jimenez, Q. Tang et al., Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, Atmospheric Chemistry and Physics, vol.13, issue.19, pp.10095-10112, 2013.
DOI : 10.5194/acp-13-10095-2013-supplement

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao et al., High secondary aerosol contribution to particulate pollution during haze events in China, Nature, vol.118, issue.7521, pp.218-222, 2014.
DOI : 10.1016/j.atmosres.2013.01.011

URL : https://boris.unibe.ch/59537/7/Huang%20et%20al%202014_High%20secondary%20aerosol%20contribution%20to%20particulate%20pollution%20during%20haze%20events%20in%20China.pdf

X. Huang, L. He, M. Hu, M. R. Canagaratna, Y. Sun et al., Highly time-resolved chemical characterization of atmospheric submicron particles during, Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, 2008.
DOI : 10.5194/acpd-12-1093-2012

URL : https://doi.org/10.5194/acpd-12-1093-2012

, Chem. Phys, vol.105194, pp.8933-8945, 2010.

J. T. Jayne, D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith et al., Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles, Aerosol Science and Technology, vol.33, issue.1-2, pp.49-70, 2000.
DOI : 10.1080/027868200410840

J. L. Jimenez, J. T. Jayne, Q. Shi, C. E. Kolb, D. R. Worsnop et al., Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer, Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer, p.8425, 2003.
DOI : 10.1080/02786820252883856

J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. Prevot, Q. Zhang et al., Evolution of Organic Aerosols in the Atmosphere, Evolution of organic aerosols in the atmosphere, pp.1525-1529, 2009.
DOI : 10.1016/1352-2310(94)90094-9

V. A. Lanz, A. S. Prévôt, M. R. Alfarra, S. Weimer, C. Mohr et al., Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview, Atmospheric Chemistry and Physics, vol.10, issue.21, pp.10453-10471, 2010.
DOI : 10.5194/acp-10-10453-2010-supplement

URL : https://hal.archives-ouvertes.fr/hal-00552876

Y. J. Li, Y. Sun, Q. Zhang, X. Li, M. Li et al., Real-time chemical characterization of atmospheric particulate matter in China: A review, Atmospheric Environment, vol.158, pp.270-304, 2017.
DOI : 10.1016/j.atmosenv.2017.02.027

M. Liu, Y. Song, T. Zhou, Z. Xu, C. Yan et al., Fine particle pH during severe haze episodes in northern China, Geophysical Research Letters, vol.51, issue.5, pp.5213-5221, 2017.
DOI : 10.5194/acp-15-2969-2015

P. S. Liu, R. Deng, K. A. Smith, L. R. Williams, J. T. Jayne et al., Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer, Aerosol Science and Technology, vol.26, issue.8, pp.721-733, 2007.
DOI : 10.1016/0021-8502(95)00009-2

A. M. Middlebrook, R. Bahreini, J. L. Jimenez, and M. R. Canagaratna, Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data, Aerosol Science and Technology, vol.54, issue.3, pp.258-271, 2011.
DOI : 10.1080/02786820490479833

C. Mohr, P. F. Decarlo, M. F. Heringa, R. Chirico, J. G. Slowik et al.,

. Zhang, Field characterization of a PM 2.5 ACSM in eastern China tification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

, Chem. Phys, vol.125194, pp.1649-1665, 1649.

N. L. Ng, M. R. Canagaratna, J. L. Jimenez, P. S. Chhabra, J. H. Seinfeld et al., Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos . Chem. Phys, vol.115194, issue.10, pp.6465-6474, 2011.

N. L. Ng, S. C. Herndon, A. Trimborn, M. R. Canagaratna, P. L. Croteau et al., An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol, Aerosol Science and Technology, vol.56, issue.7, pp.780-794, 2011.
DOI : 10.1029/2007GL029979

D. A. Orsini, Y. Ma, A. Sullivan, B. Sierau, K. Baumann et al., Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition, Atmospheric Environment, vol.37, issue.9-10, pp.1243-1259, 2003.
DOI : 10.1016/S1352-2310(02)01015-4

P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol.18, issue.2, pp.111-126, 1994.
DOI : 10.1007/978-3-642-93295-3_112

P. Panteliadis, T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer et al., ECOC comparison exercise with identical thermal protocols after temperature offset correction – instrument diagnostics by in-depth evaluation of operational parameters, Atmospheric Measurement Techniques, vol.8, issue.2, pp.779-792, 2015.
DOI : 10.5194/amt-8-779-2015-supplement

J. Peck, L. A. Gonzalez, L. R. Williams, W. Xu, P. L. Croteau et al., Development of an aerosol mass spectrometer lens system for PM 2, Aerosol Sci. Technol, vol.5, issue.50, pp.781-789, 2016.

J. Petit, O. Favez, J. Sciare, V. Crenn, R. Sarda-estève et al., Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer, Atmospheric Chemistry and Physics, vol.15, issue.6, pp.2985-3005, 2015.
DOI : 10.5194/acp-15-2985-2015-supplement

URL : https://hal.archives-ouvertes.fr/ineris-01862513

J. E. Petit, O. Favez, A. Albinet, C. , and F. , A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses, Environmental Modelling & Software, vol.88, pp.183-187, 2017.
DOI : 10.1016/j.envsoft.2016.11.022

URL : https://hal.archives-ouvertes.fr/ineris-01853423

S. M. Pieber, I. Haddad, J. G. Slowik, M. R. Canagaratna, J. T. Jayne et al., in Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Inorganic salt interference on CO + 2 in aerodyne AMS and ACSM organic aerosol composition studies, pp.10494-10503, 2016.
DOI : 10.1021/acs.est.6b01035

C. A. Pope and D. W. Dockery, Health Effects of Fine Particulate Air Pollution: Lines that Connect, Journal of the Air & Waste Management Association, vol.56, issue.6, pp.709-742, 2006.
DOI : 10.1016/B978-012352335-8/50111-3

I. C. Rumsey, K. A. Cowen, J. T. Walker, T. J. Kelly, E. A. Hanft et al., An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds, Atmos. Chem. Phys, vol.145194, issue.10, pp.5639-5658, 2014.

J. Sun, Q. Zhang, M. R. Canagaratna, Y. Zhang, N. L. Ng et al., Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmospheric Environment, vol.44, issue.1, pp.131-140, 2010.
DOI : 10.1016/j.atmosenv.2009.03.020

Y. Sun, Z. Wang, H. Dong, T. Yang, J. Li et al., Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor, Atmospheric Environment, vol.51, pp.250-259, 2012.
DOI : 10.1016/j.atmosenv.2012.01.013

Y. Sun, Z. Wang, P. Fu, Q. Jiang, T. Yang et al., The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China, Atmospheric Environment, vol.77, pp.927-934, 2013.
DOI : 10.1016/j.atmosenv.2013.06.019

Y. Sun, Q. Jiang, Z. Wang, P. Fu, J. Li et al., Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013, Journal of Geophysical Research: Atmospheres, vol.13, issue.11, pp.4380-4398, 2013.
DOI : 10.5194/acp-13-5685-2013

Y. Sun, W. Du, P. Fu, Q. Wang, J. Li et al., Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmospheric Chemistry and Physics, vol.16, issue.13, pp.8309-8329, 2016.
DOI : 10.5194/acp-16-8309-2016-supplement

Y. Sun, Q. Zhang, J. J. Schwab, K. L. Demerjian, W. Chen et al., Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos . Chem. Phys, vol.115194, issue.10, pp.1581-1602, 1581.

Y. L. Sun, Q. Zhang, J. J. Schwab, T. Yang, N. L. Ng et al., Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements, Atmos. Chem. Phys, vol.125194, issue.10, pp.8537-8551, 2012.
DOI : 10.5194/acpd-12-13299-2012

URL : https://doi.org/10.5194/acpd-12-13299-2012

Y. L. Sun, Z. F. Wang, W. Du, Q. Zhang, Q. Q. Wang et al., Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis, Atmospheric Chemistry and Physics, vol.15, issue.17, pp.10149-10165, 2015.
DOI : 10.5194/acp-15-10149-2015-supplement

URL : https://doi.org/10.5194/acpd-15-14549-2015

I. Trebs, F. X. Meixner, J. Slanina, R. Otjes, P. Jongejan et al., Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin, Atmos. Chem. Phys, vol.45194, issue.10, pp.967-987, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00295457

B. J. Turpin and J. J. Huntzicker, Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmospheric Environment, vol.29, issue.23, pp.3527-35441352, 1995.
DOI : 10.1016/1352-2310(94)00276-Q

I. M. Ulbrich, M. R. Canagaratna, Q. Zhang, D. R. Worsnop, and J. L. Jimenez, Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos . Chem. Phys, vol.95194, issue.10, pp.2891-2918, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00303447

G. Wang, R. Zhang, M. E. Gomez, L. Yang, L. Zamora et al., Persistent sulfate formation from London Fog to Chinese haze, P. Natl. Acad. Sci. USA, pp.13630-13635, 2016.

J. Wang, X. Ge, Y. Chen, Y. Shen, Q. Zhang et al., Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry, Atmos . Chem. Phys, vol.165194, issue.10, pp.9109-9127, 2016.

Y. H. Wang, Z. R. Liu, J. K. Zhang, B. Hu, D. S. Ji et al., Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing, Atmos. Chem. Phys, vol.155194, issue.10, pp.3205-3215, 2015.

J. G. Watson, Visibility: Science and Regulation, Journal of the Air & Waste Management Association, vol.52, issue.6, pp.628-713, 2002.
DOI : 10.1080/10473289.2002.10470813

Y. Xie, A. Ding, W. Nie, H. Mao, X. Qi et al., Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station, Journal of Geophysical Research: Atmospheres, vol.15, issue.D23, pp.12679-12694, 2015.
DOI : 10.5194/acp-15-2031-2015

J. Xu, Q. Zhang, M. Chen, X. Ge, J. Ren et al., Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys, vol.145194, issue.10, pp.12593-12611, 2014.

J. Z. Xu, Q. Zhang, Z. B. Wang, G. M. Yu, X. L. Ge et al., Chemical composition and size distribution of summertime PM<sub>2.5</sub> at a high altitude remote location in the northeast of the Qinghai???Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere, Atmospheric Chemistry and Physics, vol.15, issue.9, pp.5069-5081, 2015.
DOI : 10.5194/acp-15-5069-2015-supplement

W. Xu, P. Croteau, L. Williams, M. Canagaratna, T. Onasch et al., measurement capability, Aerosol Science and Technology, vol.46, issue.1, pp.69-83, 2017.
DOI : 10.1029/2004JD004649

W. Xu, T. Han, W. Du, Q. Wang, C. Chen et al., Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China, Environmental Science & Technology, vol.51, issue.2, pp.762-770, 2017.
DOI : 10.1021/acs.est.6b04498

J. Xue, Z. Yuan, S. M. Griffith, X. Yu, A. K. Lau et al., , Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation, Environmental Science & Technology, vol.50, issue.14, pp.7325-7334, 2016.
DOI : 10.1021/acs.est.6b00768

Z. Ye, J. Liu, A. Gu, F. Feng, Y. Liu et al., Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry, Atmospheric Chemistry and Physics, vol.17, issue.4, pp.2573-2592, 2017.
DOI : 10.5194/acp-17-2573-2017-supplement

J. K. Zhang, Y. Sun, Z. R. Liu, D. S. Ji, B. Hu et al., Characterization of submicron aerosols during a month of serious pollution in Beijing, Atmos. Chem. Phys, vol.145194, issue.10, pp.2887-2903, 2013.

R. Zhang, G. Wang, S. Guo, M. L. Zamora, Q. Ying et al., Formation of Urban Fine Particulate Matter, Chemical Reviews, vol.115, issue.10, pp.3803-3855, 2015.
DOI : 10.1021/acs.chemrev.5b00067

Q. Zhang, J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe et al., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, vol.39, issue.52, 2007.
DOI : 10.1021/es048568l

Q. Zhang, J. L. Jimenez, M. R. Canagaratna, I. M. Ulbrich, N. L. Ng et al., Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review, Analytical and Bioanalytical Chemistry, vol.37, issue.6, pp.3045-3067, 2011.
DOI : 10.1029/2010GL043337

Y. Zhang, L. Tang, H. Yu, Z. Wang, Y. Sun et al., Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime, Atmospheric Environment, vol.123, pp.339-349, 2015.
DOI : 10.1016/j.atmosenv.2015.08.017

Y. Zhang, L. Tang, Y. Sun, O. Favez, F. Canonaco et al., Limited formation of isoprene epoxydiolsderived secondary organic aerosol under NOx-rich environments in Eastern China, Geophys. Res. Lett, vol.44, pp.2035-2043, 2017.
URL : https://hal.archives-ouvertes.fr/ineris-01863151

Y. J. Zhang, L. L. Tang, Z. Wang, H. X. Yu, Y. L. Sun et al., Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China, Atmospheric Chemistry and Physics, vol.15, issue.3, pp.1331-1349, 1331.
DOI : 10.5194/acp-15-1331-2015-supplement