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BackGrRounD: Combining computational toxicology with ExpoCast exposure estimates and ToXGastay data gives us access to predictions of
human health risks stemming from exposures to chemical mixtures.

OsJecTives: We explored, through mathematical modeling and simulations, the size of potergztseof random mixtures of aromatase inhibitors

on the dynamics of women's menstrual cycles.

MEeTHODS: We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposi-
tion of the chemicals predicted their internal concentration as a function of time (up to 2 y). A T&@aginatase assay provided concentration
inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hygeothalamu
pituitary-ovarian control of ovulation in women.

ResuLTs: Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversiis) @ ovulation were predicted.
Exposures to individual chemicals never led to sucleas. In our best estimate, 10% of the combined exposures simulated had mild to cata-
strophic impacts on ovulation. A lower bound on thgure, obtained using an optimistic exposure scenario, was 0.3%.

ConcLusions: These results demonstrate the possibility to predict large-scale mixtetsefor endocrine disrupters with a predictive toxicology
approach that is suitable for high-throughput ranking and risk assessment. The size oédle @edicted is consistent with an increased risk of
infertility in women from everyday exposures to our chemical environnigtys://doi.org/10.1289/EHP742

Introduction (E2) or progesterone (P4). Exposures to EDCs that interfere

Concern is growing worldwide over the negative human health andirectly or indirectly with any of these hormones can eventually

environmental impacts of chemical pollutants that can interferdnduce infertility or other pathological outcomes. Aromatase is

with the production, metabolism, and action of natural hormonesgritical because it irreversibly converts testosterone to E2 and

the so-called endocrine-disrupting chemicals (EDCs). In humang&ndrostenedione to estrone, maintaining the dynamic balance

EDCs have been linked to reproductive disord&wéeney et al. between androgens and estrogens.

2015, abnormal or delayed development in childr&eifug et al. The objective of the present work was to explore predictively

2015, changes inimmune functioRogers etal. 20)3and cancer  the e ects of exposure to large-scale (i.e., potentially real-life)

(Birnbaum and Fenton 20D3Exposure to mixtures of EDCs may Mixtures of aromatase inhibitors on the dynamics of menstrual cy-

resultin e ects that can depart from mere summatiéartenkamp ~ cling in women. We input exposure estimates from ExpoCast

2007, and human subgroups (e.g., women) may not becgently ~ (Wambaugh etal. 20)&nd biological e ect data from ToxCast

protected against mixtures of EDCs by current regulatory limits(Dix et al. 2007 to coupled pharmacokinetic (PK) and ovarian

(Kortenkamp 2014 cycle models; this provided a quantitative mechanistic link between
Each menstrual cycle in women involves hormonal regulatiorexposure to mixtures of EDCs and their potential adverses on

of follicular growth and maturation resulting in ovulation of a sin- the menstrual cycle in women. We compared the expectects of

gle oocyte Falcone and Hurd 20)3The cycle is controlled by exposures to single EDCs, as is usually considered by risk assess-

coordinated stimulations and inhibitions along the hypothalamusment provisions in dierent regulations, with estimatedects of

pituitary—-ovarian axis. Gonadotropin-releasing hormone (GnRH)cumulative and concurrentexposures.

secreted by the hypothalamus, stimulates the secretion of gonad-

otropins [follicle-stimulating hormone (FSH) and luteinizing hor- Methods

mone (LH)] by the anterior pituitary gland. Those hormones, in

turn, regulate the secretion of ovarian hormones, such as estradi@/orkflow Overview

The overall computational worlow is pictured in Figure S1.

Address correspondence to F.Y. Bois, INERIS, DRC/VIVA, Parc ALATA, B”e y, after selectl_ng the chemlca!s of Interest, we sampled m”._
BP 2, 60550 Verneuil en Halatte, France. Telephone: 33-344-234-385; Emailions of random mixtures of chemicals using the exposure esti-

frederic.bois@ineris.fr mates provided by ExpoCastWambaugh et al. 2033 Both
Supplemental Material is available onlinent{ps://doi.org/10.1289/  constant and time-varying exposure scenarios of an adult woman
EHP742). were considered. A pharmacokinetic model of intake and disposi-

intTehr‘Zs?;thors declare they have no actual or potential competagcial i \vas then used to estimate the blood concentration (over 2 y)

Received 30 June 2016; Revised 7 December 2016; Accepted 24 Februal9" €ach chemical present in each mixture. The resulting aroma-
2017; Published 19 July 2017. tase activity inhibition was estimated using the Hill's dese

Note to readers with disabilities: EHP strives to ensure that all journal response model parameters provided by ToxCaéDix et al.
content is accessible to all readers. However, sogwes and Supplemental 2007). A mathematical model of the hypothalamp#uitary—
Material publ_lshed |rEHP artlclgs may not conform t608 standardgdue to ovarian hormonal events [based on a study by Chen and Ward
the complexity of the information being presented. If you need aSS'StanC&Ol d dict the | Is of E2. P4 d oth .
accessing journal content, please con&gtonline@niehs.nih.gour sta : 4] was us’_e_ to predict t_ elevelso ' » and other quanti-
will work with you to assess and meet your accessibility needs within 3ties characterizing the ovarian cycle, for a reference cycle and
working days. following exposure to the mixtures generated. Monte Carlo
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sampling Bois et al. 201p was used to propagate uncertainties  To obtain a lower bound on the ect of mixtures, we simi-
in exposure, kinetics, and desesponse relationships up to ovar- larly simulated random nonoverlapping exposures to the 86

ian cycle perturbation. EDCs selected (i.e., each person was exposed to the 86 chemi-
cals, in random order, at random times, but to only one chemical
Databases, Chemical Selection, and Mixture Sampling at a time).

ExpoCast (Wambaugh et al. 20)3rovides exposure estimates, L .
with measures of uncertainty, for 1,936 chemicals. Those expd- narmacokinetics Modeling
sure estimates were obtained using fatd, mass-balance human For each chemical in each mixture, a one-compartment PK model
exposure models (USEt&xand RAIDAR). was used to estimate its internal concentration (in micromoles) at
In ToxCast™ (11 December 2013 release), the Tox21-steady state in the case of constant oral exposure or at any point
aromatase-inhibition assay is a cell-based assay measurinigtime in the case of varying oral exposures. Steady-state internal
CYP19Al(aromatase) gene activity via aiorescent protein concentrations for chemicalvere calculated as:
reporter gene. Chemicals acting on aromatase mRNA synthe-
sis, degradation, or translation, or on aromatase itself, should give Co oz Fxx Ex 2]
positive results in this assagien et al. 2016 For each chemical 65T Kex
x assayed, ToxCa®t provides the geometric mean and standard ) ) o ] o
error for the parameter valuéCsy,  (half-maximal response)y, where.FX is the b|oava|Iab|.I|ty ofx (unltles.s),EX is its exposure
(exponent) By (baseline value) andl, (maximum value) of a Hill rate (in micromoles per .kllogram per minute, sampled as indi-
function tted to the concentratieinhibition data (scaled using Cated above), ante, is its total body clearance rate constant

the positive and negative controls' data): (per minute). A body density of 1 was assumed. ,
For time-varying exposures, internal concentrations were
. CW obtained as a function of time by numerical integration of the fol-
dnhibition= By + 8T S By P—y—=— [1]  lowing di erential over a 2-y period (with an initial value set to
ACsgx *+ Cx zero):
In ToxCast™, 1,102 chemicals are idenéd as aromatase oC, 5
inhibitors by the Tox21-aromatase-inhibition assay (on MCF-7 — = Fyx ExSKex x Ci: [3]
human breast cells) with atting that“mate basic requirements ot
of Hill model with some minimal condence in T and B. We used quantitative structure-activity relationships (QSAR)

Among those, 256 chemicals (matching either by CAS number oto obtain central estimates & andKex for each of the 86 aro-

by chemical name) also had exposure estimates in ExpoCashatase inhibitors considered. The robustness of the prediction
However, cytotoxicity has been shown to induce many false posiwas evaluated by examining compounds from the training set
tive results in ToxCadt" (Judson et al. 20)60f the 256 chemi-  similar to the target substances, together with literature data and
cals mentioned above, we kept only the 86 that had agoAC references.

(90% of maximal response) for aromatase inhibition lower than F, central estimates were obtained at several oral dose levels
their cytotoxicity AGo (10% of maximal response) (as measuredand were linearly interpolated between dose levels as needed.
by the ToxCast proliferation decrease assay on T47D humanBeyond the dose rates of 0.001 to 10-dgtheF, value at the
breast cells). The virtual mixtures generated included all of thoselosest bound was used.

86 chemicals. To take into account the uncertainty ecting the QSAR-
estimated PK parameters, we randomly samegalues from
Exposure Modeling beta distributions (naturally bounded between 0 and 1), with pa-

f@meters calculated such that the distribution modes corre-
sponded to the interpolated value Bf with a coe cient of
variation (CV) of 20% (for nulFx modes,a andb were set to 1

ExpoCast provided the molecular mass, geometric mean, a
lower and upper 95% codence limits of the exposure rate
(milligrams per kilogram per day) for each chemical present in S . .
the randomly generated mixtures. For constant exposure mod _nddSO, y|QI|d|ng aonagdlan at 0.01, &?t quart|le| at 0.006, alnd a
ing over 10 mo, we sampled a rate for each chemical from thé ird quartile at 0.03, approximatelyKex values were log-

corresponding log-normal distribution, but with a standard devignormally sampled with a geometric mean equal to the central

tion (SD) scaled by the square root of the number of days of exestimates obtained by QSAR and a geometric SD corresponding
posure simulated (because a constant exposure rate should b&o4 factor of 3.
time average level in that case) and converted it to micromole% .
per kilogram per minute. varian Cycle Model

More realistic time-varying exposures over a 2-y period wereWe adapted the menstrual cycle model presented by Chen and
also modeled [similarly to the report of Bertail et aR0@0] Ward 2014). The model describes the inhibitory and stimulatory
using exposure windows of random length and intensity. & e ects of hormones E2 and P4 on the hypothalamibsitary
sampled the number of exposure window for each chemical axis in women Figure 1. The equations and daitions of all pa-
in the mixture from a scaled exponential distribution (with arameters used in the model are given in the Supplemental
rate parameter equal to 5). Tthaelded on average 145 expo- Material (se¢ Menstrual cycle model equatichsee also Tables
sure events over 2 y (median: 100 eventsst quartile: 40  S3 and S4). In the original model, E2 and P4 were assumed to be
events, third quartile: 200 events). Theexposure'sstart and  instantaneously in equilibrium between blood and the ovaries.
end times were sampled uniformly over the 2-y period. The exdnstead, we described the kinetics of E2 and P4 usingréintial
posure rate during each of theexposure windows was ran- equations (Equations 39 in the Supplemental Material,
domly sampled from the log-normal distribution given by “Menstrual cycle model equatidh)s That modi cation had prac-
ExpoCast, with an SD scaled by the number of days of the extically no impact on the time course of the model variables during
posure window considered (onscaled if the exposure lasted a normal cycle [equilibrium between blood and ovaries is fast, as
less than a day). assumed by Chen and War@0{4], but it allowed us to
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Figure 1. Regulatory pathways of the human menstrual cycle as implemented in the model. During the follicular phase (1: germ cells; 2: developing follicle;
3: mature follicle; 4: ovulation; 5: corpus luteum formation; 6: corpus luteum degradation), negative feedback by estradiol (E2) reducssrfullaierg hor-

mone (FSH) secretion, leading to the selection of one follicle for ovulation. Gonadotropin-releasing hormone (GnRH) secretion is promoted iohiB2 and

ited by progesterone (P4), inducing a luteinizing hormone (LH) peak and consecutive ovulation. E2 is mainly produced by follicles and corpugll@®®um a

by corpus luteum.

coherently integrate the dynamic aspect of estradiol synthesis irever Ty for letrozole to properly rescale the ToxC®&5sfT, values
hibition by EDCs. The three additional parameters (blood andetween 0 and 100.

ovarian volumes, ovarian bloodw) were obtained from the lit- EDcypg Was entered as an input to the ovarian cycle model,
erature (see Table S3). which was then solved to obtain the time pl®of its output var-

An additional variable, the ratio of disrupted over basal E2iables over 2 y of simulated time. For constant exposures, we
synthesis rate constantS@cymo), was introduced to link the in- computed the square root of the sum of the squared Euclidean
ternal doses of chemicals in mixtures to aromatase inhibitiondistances between a reference E2 concentrai@t{mo Set at
EDcypg Was calculated using Hi# model, parameterized with zero) and the perturbed concentrations (aked set of times) as
the chemical-spect values provided by ToxCa#t, as a cumu- a summary measure of disruption.
lative product of remaining activity for each of time chemicals

of the mixture considered: Software Used
quo T 1 The ACD/Labs Percepta platform modules ACD/Oral Bioavail-
EDcyp1o= @1é X [4] ability and ACD/PK Explorer were used for the prediction of oral

Xl 100 A V‘(’;,X+ Wi A bioavailability ) and the total body clearance rate constégj,(
respectively (see Supplemental Materi@K modules of ACD/

For constant exposure§, was set to the steady-state internal Labs; see also Table S1 and Figures S2 and S3). GNU MCSim
concentrationsC, ¢, FOr time-varying exposures;, was com- v5._6.5 (NWW.g_nu.org/software/mchT(Bms 2009 was used to
puted by integration as explained above. The paranBgters set build the oovarian cycle model. R v3.1.1 (R Development Core
to zero because a positive inhibition with no dosage would notl €@m) with the parallel, deSolve, and EnvStats packages was
make senseACsox, Wk, and T, values were randomly sampled used for datapase processing, numerical integration of the mod-
using the mean and standard error provided by ToX@astCso,x els, and graphics.
was sampled from a log-normal distribution (its logarithm is
actually the ToxCad¥ tted value).Wy and T, were sampled Results
from truncated normal distributions. Truncation was from 0 to 10_ .
for W (values beyond 10 would be found for some chemicals forESt'm"j‘t‘c"S of Internal Dose
which W is poorly identi ed, but have no biological meaning). The relationship between constant exposure rates and steady-
Truncation was from 0 to 100 for letrozoldg (the positive con-  state internal concentrations for the 86 EDCs considered indicates
trol). For the other chemicals, truncation was from 0 to 10,000that exposures ranged from Sf0mole=kg=d to 1C*3l mole=
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kg=d and that _the resulting steady-state internal concentrations
ranged from 183 M to 10°°| M (see Figure S4). The exposure

rates and pharmacokinetic parameters were Monte Carlo sample:
as described above. For any single EDC, uncertainty is approxi-
mately a factor of 10 for exposures and approximately a factor of

-2

1,000 for the resulting internal concentrations. For time-varying @

exposures, Figure S5 shows an example of a simulated randong 4
2-y time course of internal concentration for lindane. Such pro- §
les were obtained for each chemical in each simulated mixture. 9
o

Cycle Model Behavior g
Our implementation of the ovarian cycle model proposed by Chen g
and Ward 2014 correctly reproduces their results. Human data o

from McLachlan et al.1990 and Welt et al. {999 on LH, FSH, §’ -8

E2, and P4 normal cycles are correctly simulated except for
McLachlan FSH data, for which the baseline levels are not well
matched. There is a large intra- and inter-subject variability in hor-
monal levels across women in those data sets (see Figure S6). W -10
took the model-simulated normal cycling of E2 as theference
cycle’ in the following. Constant exposure scenarios result, at
steady state, in a constant level of aromatase inhibition. In that case 1 2 3 4 5 6 7 8
perturbation depends only on that parameter (according to the Slope (W) at ACsg
model assumptlons), sothe distance betwe?n the perturbed and I'Elfg-ure 3.Map of the aromatase inhibitors studied over a planendd by
erence cycles is a useful measure oet (sed-igure 9. Asaroma-  joseresponse slop and log-margin of exposure (see text). Colors vary
tase inhibition increases, cycles become increasingly perturbed angearly with powers of 10 of aromatase inhibition resulting fram and
exhibit chaotic features (hence the misalignment of the points imnargin of exposure combinations, from red Y3)0to blue (1§%%). For the
Figure 2. At 5% inhibition (95% of normal aromatase activity), chemicalsnumbers correspondence, see Table S1.
cycles are shortened, baseline levels change little, and peak levels
either increase or decrease less than proportionally except for L . .
Simply put, the regulations dampen theeet of perturbation. At "Eftects of Single Chemicals

10% inhibition, LH peaks disappear after approximatelye =~ We rst simulated 1,000,000 constant exposures to each of the 86
cycles, and a major bifurcation in cycle patterns occurs: cycles arehemicals considered, taken individually. In that case, despite
further shortened, baseline levels are much increased (doubled faccounting for uncertainty in exposure levels and doessponse
E2 and P4, for example, even though E2 synthesis by aromataseparameters, none induced ¥laromatase inhibition. Hence, none
decreased), and peak levels mostly decreased; E2 distance to nofthose chemicals alone was able to induce a siganit disruption
mal increases up to a maximufFigure 2. At higherinhibitionlev-  of the ovarian cycleFigure 3places those chemicals on a map with
els, the cycles increasingly dampen and disappear completethe slopeWw of the Hill doseresponse curve #&Cso and the log-
between 30% and 40% inhibition (see FiguresSD). Overall, margin of exposure as coordinates. The margin of exposure was
according to this model, having 10% constant inhibition of aro-  de ned as the ratio of the 97.5th percentile of internal concentra-
matase activityn vivoleads to perturbations of the cycle, which is tions overACso. The log ,-margins of the chemicals studied ranged
still under control and should be compatible with normal reproducfrom S10 toS1:8, indicating that for all chemicals, the high end of
tive function. Beyond 10% inhibition, an actual disruption of the internal exposure concentrations was at most 1%@p. In that
system seemsto occur. caseEquation Ishows that the logarithm of aromatase inhibition is
approximately equal to the productWhimes the log-margin of ex-
posure. The color background of the map codes for the resulting
risk index (i.e., the log-inhibitions) and ranges from$2 (1%) to
approximatelyS80 (13°"® %), much too low to elicit changes in
2500 N ovarian cycles such as thoseRigure 2 Therefore, no eects can

be expected from typical exposures to those chemicals when

3000 —

2000 —

Table 1.Top-ranking chemicals according to their individual risk indices.
Those chemicals are in the top left corner of Figure 3.

1500 —

Euclidian distance to reference E2

1000 ExpoCast name CAS number Risk infex
Letrozole 112809-51-5 S$2:99
Estrone 53-16-7 S$3.41
500 1 Fulvestrant 129453-61-8 $4:30
Triflumizole 68694-11-1 S4:81
o4 ! 2,4,7,9-Tetramethyl-5-decyne-4,7-diol 126-86-3 $5:11
T T T T T T n-Methyl-2-pyrrolidone 872-50-4 S5:49
0 20 40 60 80 100 Rhodamine 6G 989-38-8 $551
o Anastrozole 120511-73-1 S6:04
Aromatase inhibition (%) Fenvalerate 51630-58-1 $6:05
Figure 2. Euclidean distance between an estradiol (E2) normal cycle and a pell_mazahl 35554-44-0 S6:31
turbed cycle as a function of aromatase inhibition at steady state. Distance #Risk index =W x log,,&es=ACsoR Where Eqs is the 95th percentile of the exposure
computed over 2y based on 7,301 time points (one every 144 min). values sampled, W is the Hill exponent, and AC50 the half-maximal response.
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considered alonelable 1gives the list of the 10 chemicals for
which individual risk is the highest. Note that letrozole is the refer-
ence chemical for the Tox21 aromatase inhibition assay, which is
consistent with its high rank. The others are found in therapeutic
drugs, agrochemicals, food contaminants, consumer products, and
other materials.

Effects of Mixtures of Chemicals

We generated 1,000,000 hypothetical mixtures of the 86 aroma-
tase inhibitors studied and evaluated their globa¢a on E2
synthesis and the resulting ovarian cycle disruptibigure 4
shows a histogram of the resulting inhibition levels. Depending
on the (random) composition of the mixtures, and given the
uncertainties on exposures and eet parameters, responses
ranged from 0% to 100% inhibition, but on average were very
high. Such inhibition levels may lead to perturbation of the ovar-
ian cycle, according to the model.

Real-life exposures to chemicals do not usually occur at con-
stant levels. We simulated time-varying exposures (see Figure
S5) to investigate the resulting ects on aromatase inhibition
and ovarian cycle disruption. To dee a lower bound on mixture
e eCt_S' we rst S'mm_ated uctuating levels of exposure to EDCs, _Figure 5. Histogram of the average percent inhibition of estradiol (E2) syn-
but without concomitant exposures to them. Interactions can stillhesis by random mixturesi& 1,000,000) of 86 aromatase inhibitors with
occur in that case because of storage in the body or because @he-varying nonconcomitant exposures. For visibility, thet histogram bar
persistent eects on the ovarian cycl&igure 5shows that only  has been truncated (it represen@0,000 simulations). Note: E2, estradiol.
0.3% of the simulated exposures caused%H¥erage aromatase
inhibition. The maximum inhibition found was close to 50%. may not return to normal) and an irregular succession of peaks
More realistic exposure scenarios do not prohibit concomitanfcorresponding to ovulation)F{gure 7. The 1,000 simulations
exposures. In that cas€&igure 6, the distribution of simulated examined can be classid into four groups. In group 1 (17% of
time-averaged inhibitions is shifted toward greatee@s, and the samples), the cycles are practically normal with no baseline
average inhibitions >2% are not uncommon (yet they do not shifts and at most one or two missing ovulations. In group 2
reach the extreme levels observedFiigure 4. Because inhibi-  (73% of cases), baseline shifts are always present but without
tion changes with time, the distances between normal and pemajor irregularities in ovulation. Group 3 (7% of cases) has sys-
turbed cycles do not follow the pattern shown Higure 2  tematic baseline shifts and frequent or prolonged anovulations.
(distances can be much larger), and the link between estradiol irSuch cycling would clearly impair fertility. In group 4 (3% of
hibition and cycle disruption is harder to establish. Examinationcases), disruption is catastrophic or total. Figure S11 shows the
of the time course of the dominant follicle ma$g {or 1,000 ran-  corresponding plots for E2 time courses. Judging by these plots,
dom simulations of mixtures of the 86 chemicals shows that perE2 pro les can have a shifted baseline even in normal ovulation
turbed cycles typically have a baseline shifted up (which may opro les, but otherwise, the patterns are rather similar.

Figure 4. Histogram of the average percent inhibition of estradiol (E2) syn- Figure 6. Histogram of the average percent inhibition of estradiol (E2) syn-
thesis by random mixtures € 1,000,000) of 86 aromatase inhibitors at con- thesis by random mixtures1 € 1,000,000) of 86 aromatase inhibitors with
stant exposure levels. time-varying exposures.
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Figure 7. Typical simulated time prdes of dominant follicle mass during time-varying exposures to random mixtures of 86 aromatase inhibitors. Four classes
(rows) of increasing disruption are illustrated (see text). Left column: least disrupteté pinaits class; Right column: most disrupted. Responses range from
regular ovulation (&) to complete disruption @).

Discussion so forth (Tornero-Velez et al. 2092 We modeled coexposures

We linked ToxCast" data and ExpoCast estimates of exposures tdY random sampling, either at a constant level or, more realisti-
(mixtures of) aromatase inhibitors and estimated therces on the ~ cally, with time-varying exposure prées and hence with time-
ovarian cycle in women. To our knowledge, this is thst applica- ~ varying mixture complexity. That approach is still imperfect,
tion of computational toxicology and high-throughput testing to assesgnd we had to guess about the distribution of the number of expo-
ment of the combined ects of exposures to a large number of EDCs. Sure windows, for example. We respected the distribution of pop-
Our approach is predictive, and we had to make manylation exposure levels documented by ExpoCast, but lacking
assumptions and simplations. ToxCast" and ExpoCast are Ccoexposure information, our estimates might be lower or higher
incomplete, and a full inventory of all the EDCs to which women than in reality. E orts are ongoing to collect relevant data in, for
are exposed is not yet available. Therefore, we were only able tgxample, the European Total Diet Studyir{ et al. 2014. An
look at a subset of the potential EDCs. We used human exposu@alysis of such dataT(aoré et al. 201pshows that among
estimates reported by Wambaugh et @013, who gave sum- 153 synthetic chemicals studied in seven typical French diets
mary statistics for the distribution of exposures to individual (food associations), three are aromatase inhibitors according to
chemicals. This information allowed us to take the correspondToxCast™: zearalenone, triadimenol, and lindane. In this regard,
ingly large uncertainty into account via Monte Carlo simulations.mixtures of 86 aromatase inhibitors may seem unrealistic, but
However, we cannot dierentiate between uncertainty and vari- only food contaminants were studied by Traoré et2010.
ability in those exposure estimates, and we cannot identify sub- We searched for the 86 selected aromatase inhibitors in a
groups of sensitive individuals. We cannot even focus on womerglatabase of consumer products marketed in the United States
our target population. More sophisticated exposure modeléGabb and Blake 20)6Brie v, this database was constructed by
(Isaacs et al. 2004could help in that respect, but they still deal scraping product information from online retailers and currently
only with single chemicals and provide no data or estimates omontains 53,743 products. Twelve of the 86 aromatase inhibitors
coexposures. Depending on age, occupation, socioeconomic staere detected in 5,701 products (representing 11% of the prod-
tus, ethnicity, and health condition, we are exposed tedint  ucts in the database). [It is worth noting that none of the 86 aro-
cocktails of chemicals in our diet, workplace, environment, andmatase inhibitors is among the volatile fragrance chemicals
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detected in consumer productSt¢inemann 2015Steinemann The evidence provided by ToxC&4tis also not perfectly
et al. 201}, so aromatase inhibitors are unlikely to be hidden inpredictive of in vivo outcomes in humans. For example, the
generic‘fragrancé or“ avor’ designations on consumer product Tox21 aromatase inhibition assay uses the MCF-7 breast cancer
labels.] Two-way combinations of these chemicals were found ircell line, which might not respond as normal ovary cells would.
220 products, and the three-way combination of carminic acidln addition, our model of the ovarian cycl€lfen and Ward
FD&C blue no. 1, and retinol was found in 3 products. These2014) describes only approximately the complex dynamic inter-
ndings may not seem to indicate a large problem, but it is aractions between ovarian follicular growth and hormonal homeo-
incomplete view of combinatorial exposure. Consider that 3,66Gtasis. The hypothalamus and pituitary gland are treated as a
of 4,501 makeup products (81%) in the database contain at leasingle compartment, and the description of the central hormonal
one of the aromatase inhibitors evaluated (carminic acid, retinolgontrols is simplied. More complex models have been proposed
and arti cial colors are common ingredients in makeup) and thaiHendrix et al. 2014 but they still make many assumptions and
a typical consumer uses several products each day, possibly evén not seem to cer dramatically better performance. In addition,
several makeup products. This increases the likelihood of comwe note that we treated the parameters of the ovarian cycle as
bined exposures. In addition, no readily available data address asszenstant, when in fact they are ected by both uncertainty and
ciations for all near- and fareld exposures for the 86 aromatase variability in response to EDCs, adding to the tails of the distribu-
inhibitors, which are used in industrial or agricultural processegions of our results. However, we did not have sient informa-
(18), consumer product formulations (12), biocidal applicationstion to de ne statistical distributions for those parameters.
(38), and pharmaceutical drugs (18). These usage categories are In terms of results, an obvious question is that of thad
likely to be independent, so focusing on a few known associationgctors, that is, the chemicals responsible for the predictedts.
would only give partial answers and would underestimate globallhe answer is provided byigure 3(and partially by the top-ten
risk. We are striving for a more &ensive picture. To address the Table 1) because here, the impact of individual chemicals on aro-
potential overestimation of mixture ects when generating purely matase is only conditioned by internal dose and inhibition po-
random associations, we preserg thsults of a very optimistic ex- tency.Figure 3is a useful prioritization tool. It is rather simple to
posure scenario (with no coexposs at all). This scenario gives a construct and does not require running the ovarian cycle (the PK
lower bound estimate: 0.3% of exposures would lead td#&0er-  model is needed). However, it does not give an answer in terms

age aromatase inhibition in women. of magnitude of eect at the subject level. For that, we need the
ToxCast™ aromatase inhibition data were obtained by expos-whole-body ovarian cycle model.
ing cellsin vitro. We had no easy way to assess thevitro One of the consistent features of E2 cycle perturbation that

kinetics of the substances assayed, and reconstruction methode found is that the baseline (interovulation) levels of E2 tend to
(Armitage et al. 201%require input data that we did not have. increase (to approximately twice the normal level) in response to
We assumed that the nominal assay concentrations were thogeomatase inhibition (which implies a lower rate of E2 synthesis
actually experienced by the cells and that equivalent extracellulasy aromatase). That counterintuitive feature of the complex cycle
concentrationgn vivo would lead to the same levels of aromatasedynamic is induced by central nervous system (CNS) feedback.
inhibition. That is a typical assumption, but it is not necessarily cor-Beyond a certain level of inhibition, the control of E2 remains in
rect (Coecke et al. 2093 To obtain extracellular concentrations e ect (peaks are still observed) but moves the baseline to a higher
in vivo, we estimated bioavailability and total clearance with value. We do not have conmation that this is the case in women
QSAR methods and input them in a simple awnpartment exposed to EDCs, but that would be interesting information and a
PK model with oral exposure only (even though inhalation orpotential biomarker of eects. We also note that we lack good
dermal exposures might be more relevant). Again, more sophistimeasures of perturbation for such complex systems. We used vis-
cated [physiologically based pharmacokinetic (PBPK)] modelsual inspection to classify cycles for 1,000 time-varying exposures
and additional PK data would give more precise and more accufigure 7. Perturbation analysis of more cycles would require
rate predictionsEl-Masri et al. 2016Wambaugh et al. 2035 more sophisticated tools. Finally, many other perturbation path-
On the e ect side, we only considered chemicals for which ways exist for ovarian cycle disruption that were not accounted
the ToxCast™ doseresponse parameters were estimated withfor (e.g., actions mediated by the androgen or estrogen receptor).
reasonable cordence. This was a conservative choice, and addi-The simplicity of our model also precludes investigation of syner-
tional chemicals would have been included if more relaxed critegistic or antagonistic eects that could result from metabolic or
ria had been chosen (at the cost of lower atence in the toxicodynamic interactionsgQheng and Bois 2031
results). A concern with large databases such as ToXCasthe
quality assurance for the data provided. Aromatase inhibition .
may not be the most sensitive toxicity end point, for example, oConclusion
the action may be due to a burstext of cytotoxicity Judson  High-throughput data collection requires high-throughput analy-
et al. 2016. From the original set of 256 aromatase inhibitors for sis, extrapolation, and decision tools if we want to avoid a bottle-
which we had exposure estimates and ToxTChdata, 170 were neck and accumulation of unused data. We developed such a
excluded based on cytotoxicity. Those were mostly weak inhibitool, making use of our increasing understanding of toxicity
tors (data not shown). For the screen, we kept only the 86 submechanisms.
stances that had an aromatase inhibitiongfAfower than their This exercise in prediction suggests large data gaps. Our
cytotoxicity ACyo as measured by the ToxC#8stproliferation  knowledge of exposure to actual mixtures is minimal except in a
decrease assay on T47D human breast cells, a cell type similar few cases (e.g., tar, tobacco smoke). For the chemicals studied
the MCF-7 used by the aromatase inhibition ass&ka(@nd Lin  here, quantitative knowledge of their routes of exposure and PK
2012. We preferred that screen to the omnilmscore criterion, parameters is also lacking. Our knowledge of endocrine disrup-
which aggregates cytotoxicity results from drent cell types tion mechanisms is still in its infancy. We should check, for
and species. For the remaining 86 substances, we may still haexample, the inhibition potential of the 86 substances studied
downplayed other types of toxicity. Cytotoxicity, it should be here with better tests and with better characterization of the
noted, is not a negligible end point, and an evaluation of the cytoin vitro fate of the chemicals. Nevertheless, we now have a priori-
toxicity of mixtures would be interesting in its own right. tized list and some reason to deepen our investigations. We
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should also research relevant human biomarkers of exposure aftiMasriH, Kleinstreuer N, Hines RN, Adams L, Tal T, Isaacs K, et al. 2016. Integration
e ects for validation of the results and for better actions. of “fe-St:’;?e Physi?jlogiC_a”y bantedl pharmacokin;tilc tmodels Wfith adverse outt—I

: : : : come pathways and environmental exposure modeis to screen for environmental

The basic assumption of regulatory practice and most risk hazards. Toxicol Sci 152(1):23€8, PMID2720807 https://doi.org/10.1093/

assessments is that keeping individual chemicals under control ..« 005
with reasonable safety factors will keep their jointeets at bay.  raicone T, Hurd Ww, eds. 20Cfinical Reproductive Medicine and SurgeNew
That may not be the case. Some women have various levels of York, NY:Springer.
ovarian dysfunction that can be caused by various internal an@abb HA, Blake C. 2016. An informatics approach to evaluating combined chemical
external factors. Environmental chemical exposures add on to ?XFrOSUfgS from ?Olnsu?er Pfod(;{cwacase study of astlhrr]na-assomatezd chem-
that backgroundNational Research Council 200Zeise et al. icals and potential endocrine disruptors. Environ Health Perspect 124:1155

A . . 1165, PMI26955064ttps://doi.org/10.1289/ehp.1510529
2013' We found that even thoth individual chemicals are “kely Hendrix AO, Hughes CL, Selgrade JF. 2014. Modeling endocrine control of the

“saf¢ as used now, their joint ects, when they exceed a few pituitary-ovarian axis: androgenic influence and chaotic dynamics. Bull Math
dozen in number, can lead to severe disruption of the ovarian Biol 76(1):13656, PMID24272388ittps://doi.org/10.1007/s11538-013-9913-7
cycle in women in a sizable number of cases. Obviously, thigsaacs KK, Glen WG, Egeghy P, Goldsmith MR, Smith L, Vallero D, et al. 2014.
study does not provide daite proof that some fertility problems SHEDE'H: an irl‘tegft?ed pf‘if’PT(?i'iSt(ide?XtF’OSUfe mOde'EfOV_P”Og“?igg T]XPCI"
; ol Sures to chemicals with near-field and dietary sources. Environ Sci Techno
can be caused by real-life exposures to EDCs. Nevertheless, risk o1 0cro760 pumims22218ttps:idoi.org/10.1021/es502513w
assessment PraCt'Ce and regl'"atlons should start thmkmg Qf thﬁdson R, Houck K, Martin M, Richard AM, Knudsen TB, Shah I, et al. 2016.
problem of mixtures not as an unsolvable one, but as needing a Egitors Highlight: analysis of the effects of cell stress and cytotoxicitjnon
clearly laid out research agenda. In the case in point, the simple vitro assay activity across a diverse chemical and assay space. Toxicol Sci
graphical map of internal dose and potency we propose could al- 152(2):32339, PMID2720807 %ittps://doi.org/10.1093/toxsci/kfw092
ready be used for prioritization. Given the magnitude of the rangéﬂodenkgmp A. 2014. Low dose mixture _effects qf endocrine disrupters and th_eir
of the predicted eects on ovarian cycling, while Waiting for con- implications for regulatory thresholds in chemical risk assessment. Curr Opin

. . : Pharmacol 19:16511, PMID25244397ttps://doi.org/10.1016/j.coph.2014.08.
rmation of our results, a cautionary attitude should be adopted. g e ¢ heop
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