J. Aka and S. Lin, Correction: Comparison of Functional Proteomic Analyses of Human Breast Cancer Cell Lines T47D and MCF7, PLoS ONE, vol.7, issue.4, p.31532, 2012.
DOI : 10.1371/annotation/18f08a33-35e1-4bf9-8d21-476757dccbef

J. Armitage, F. Wania, and J. Arnot, Application of Mass Balance Models and the Chemical Activity Concept To Facilitate the Use of in Vitro Toxicity Data for Risk Assessment, Environmental Science & Technology, vol.48, issue.16, pp.9770-9779, 2014.
DOI : 10.1021/es501955g

P. Bertail, S. Clémençon, and J. Tressou, Statistical analysis of a dynamic model for dietary contaminant exposure, Journal of Biological Dynamics, vol.8, issue.2, pp.212-234, 2010.
DOI : 10.1016/j.fct.2007.02.009

URL : https://hal.archives-ouvertes.fr/hal-02107301

L. Birnbaum and S. Fenton, Cancer and Developmental Exposure to Endocrine Disruptors, Environmental Health Perspectives, vol.111, issue.4, pp.389-394, 2003.
DOI : 10.1289/ehp.5686

F. Bois, GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models, Bioinformatics, vol.24, issue.17, pp.1453-1454, 2009.
DOI : 10.1093/bioinformatics/btn338

URL : https://hal.archives-ouvertes.fr/ineris-00961935

F. Bois, M. Jamei, and H. Clewell, PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals, Toxicology, vol.278, issue.3, pp.256-267, 2010.
DOI : 10.1016/j.tox.2010.06.007

URL : https://hal.archives-ouvertes.fr/ineris-00961755

C. Chen and J. Ward, A mathematical model for the human menstrual cycle, Mathematical Medicine and Biology, vol.31, issue.1, pp.65-86, 2014.
DOI : 10.1093/imammb/dqs048

S. Chen, J. Hsieh, R. Huang, S. Sakamuru, L. Hsin et al., Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library, Toxicological Sciences, vol.118, issue.2, 2015.
DOI : 10.1016/j.biomaterials.2013.07.100

, PMID: 26141389, https, Toxicol Sci, vol.147, issue.2, pp.446-457

S. Cheng and F. Bois, A Mechanistic Modeling Framework for Predicting Metabolic Interactions in Complex Mixtures, Environmental Health Perspectives, vol.119, issue.12, pp.1712-1718, 2011.
DOI : 10.1289/ehp.1103510

URL : https://hal.archives-ouvertes.fr/ineris-00961768

S. Coecke, O. Pelkonen, S. Leite, U. Bernauer, J. Bessems et al., Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches, Toxicology in Vitro, vol.27, issue.5, pp.1570-1577, 2013.
DOI : 10.1016/j.tiv.2012.06.012

URL : https://hal.archives-ouvertes.fr/ineris-00963488

D. Dix, K. Houck, M. Martin, A. Richard, R. Setzer et al., The ToxCast Program for Prioritizing Toxicity Testing of Environmental Chemicals, Toxicological Sciences, vol.2, issue.1, pp.5-12, 2007.
DOI : 10.2217/14622416.7.2.177

H. El-masri, N. Kleinstreuer, R. Hines, L. Adams, T. Tal et al., Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards, Toxicological Sciences, vol.95, issue.1, pp.230-243, 2016.
DOI : 10.1124/dmd.106.011387

T. Falcone and W. Hurd, Clinical Reproductive Medicine and Surgery, 2013.

H. Gabb and C. Blake, An informatics approach to evaluating combined chemical exposures from consumer products: a case study of asthma-associated chemicals and potential endocrine disruptors, Environ Health Perspect, vol.124, pp.1155-1165, 2016.

A. Hendrix, C. Hughes, and J. Selgrade, Modeling Endocrine Control of the Pituitary???Ovarian Axis: Androgenic Influence and Chaotic Dynamics, Bulletin of Mathematical Biology, vol.2, issue.1, pp.136-156, 2014.
DOI : 10.1186/1477-7827-2-31

K. Isaacs, W. Glen, P. Egeghy, M. Goldsmith, L. Smith et al., SHEDS-HT: An Integrated Probabilistic Exposure Model for Prioritizing Exposures to Chemicals with Near-Field and Dietary Sources, Environmental Science & Technology, vol.48, issue.21, pp.12750-12759, 2014.
DOI : 10.1021/es502513w

R. Judson, K. Houck, M. Martin, A. Richard, T. Knudsen et al., Assay Activity Across a Diverse Chemical and Assay Space, Toxicological Sciences, vol.116, issue.2, pp.323-339, 2016.
DOI : 10.1002/jcc.21707

A. Kortenkamp, Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment, Current Opinion in Pharmacology, vol.19, pp.105-111, 2014.
DOI : 10.1016/j.coph.2014.08.006

A. Kortenkamp, Ten Years of Mixing Cocktails: A Review of Combination Effects of Endocrine-Disrupting Chemicals, Environmental Health Perspectives, vol.115, issue.S-1, pp.98-105, 2007.
DOI : 10.1289/ehp.9357

R. Mclachlan, N. Cohen, K. Dahl, W. Bremner, and M. Soules, SERUM INHIBIN LEVELS DURING THE PERIOVULATORY INTERVAL IN NORMAL WOMEN: RELATIONSHIPS WITH SEX STEROID AND GONADOTROPHIN LEVELS, PMID: 2110047. National Research Council. 2009. Science and Decisions: Advancing Risk Assessment, pp.39-48, 1990.
DOI : 10.1016/0006-291X(86)91020-X

J. Rogers, L. Metz, and V. Yong, Review: Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms, Molecular Immunology, vol.53, issue.4, pp.421-430, 2013.
DOI : 10.1016/j.molimm.2012.09.013

T. Schug, A. Blawas, K. Gray, J. Heindel, and C. Lawler, Elucidating the Links Between Endocrine Disruptors and Neurodevelopment, Endocrinology, vol.156, issue.6, pp.1941-1951, 2015.
DOI : 10.1210/en.2014-1734

URL : https://academic.oup.com/endo/article-pdf/156/6/1941/8989935/endo1941.pdf

A. Steinemann, Volatile emissions from common consumer products, Air Quality, Atmosphere & Health, vol.110, issue.Suppl 4, pp.273-281, 2015.
DOI : 10.1289/ehp.02110s4527

A. Steinemann, I. Macgregor, S. Gordon, L. Gallagher, A. Davis et al., Fragranced consumer products: Chemicals emitted, ingredients unlisted, Environmental Impact Assessment Review, vol.31, issue.3, pp.328-333, 2011.
DOI : 10.1016/j.eiar.2010.08.002

M. Sweeney, N. Hasan, A. Soto, and C. Sonnenschein, Environmental endocrine disruptors: Effects on the human male reproductive system, Reviews in Endocrine and Metabolic Disorders, vol.121, issue.9, pp.341-357, 2015.
DOI : 10.1016/j.mce.2014.09.028

URL : http://europepmc.org/articles/pmc4803593?pdf=render

R. Tornero-velez, P. Egeghy, C. Hubal, and E. , Biogeographical Analysis of Chemical Co-Occurrence Data to Identify Priorities for Mixtures Research, Risk Analysis, vol.75, issue.2, pp.224-236, 2012.
DOI : 10.1111/j.1751-5823.2007.00015_21.x

T. Traoré, C. Béchaux, V. Sirot, and A. Crépet, To which chemical mixtures is the French population exposed? Mixture identification from the second French Total Diet Study, Food and Chemical Toxicology, vol.98, pp.179-188, 2016.
DOI : 10.1016/j.fct.2016.10.028

K. Vin, A. Papadopoulos, F. Cubadda, F. Aureli, O. Basegmez et al., TDS exposure project: Relevance of the Total Diet Study approach for different groups of substances, Food and Chemical Toxicology, vol.73, pp.21-34, 2014.
DOI : 10.1016/j.fct.2014.07.035

J. Wambaugh, R. Setzer, D. Reif, S. Gangwal, J. Mitchell-blackwood et al., High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project, Environmental Science & Technology, vol.47, issue.15, pp.8479-8488, 2013.
DOI : 10.1021/es400482g

J. Wambaugh, B. Wetmore, R. Pearce, C. Strope, R. Goldsmith et al., Toxicokinetic Triage for Environmental Chemicals, Toxicological Sciences, vol.18, issue.4, pp.55-67, 2015.
DOI : 10.1016/j.tiv.2013.10.023

URL : https://academic.oup.com/toxsci/article-pdf/147/1/55/16689092/kfv118.pdf

C. Welt, D. Mcnicholl, A. Taylor, and J. Hall, Female Reproductive Aging Is Marked by Decreased Secretion of Dimeric Inhibin, Journal of Clinical Endocrinology & Metabolism, vol.84, issue.1, pp.105-111, 1999.
DOI : 10.1210/jc.84.1.105

L. Zeise, F. Bois, W. Chiu, D. Hattis, I. Rusyn et al., Addressing human variability in next-generation human health risk assessments of environmental chemicals, Environ Health Perspect, vol.121, issue.1, pp.23-31, 2013.
URL : https://hal.archives-ouvertes.fr/ineris-00961796