Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown - Ineris - Institut national de l'environnement industriel et des risques Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2017

Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown

Roberto Bianconi
  • Fonction : Auteur
Christian Hogrefe
  • Fonction : Auteur
Gabriele Curci
  • Fonction : Auteur
Paolo Tuccella
  • Fonction : Auteur
Ummugulsum Alyuz
  • Fonction : Auteur
Rocio Baro
  • Fonction : Auteur
Roberto Bellasio
  • Fonction : Auteur
Johannes Bieser
Xavier V. Francis
  • Fonction : Auteur
Andrea Fraser
  • Fonction : Auteur
Ulas Im
Uarporn Nopmongcol
  • Fonction : Auteur
Ranjeet S. Sokhi
  • Fonction : Auteur
Alper Unal
  • Fonction : Auteur
Greg Yarwood
  • Fonction : Auteur

Résumé

Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2. 5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluation methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.
Fichier principal
Vignette du fichier
2017-270.pdf (2.94 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

ineris-01863251 , version 1 (28-08-2018)

Identifiants

Citer

Efisio Solazzo, Roberto Bianconi, Christian Hogrefe, Gabriele Curci, Paolo Tuccella, et al.. Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown. Atmospheric Chemistry and Physics, 2017, 17, pp.3001-3054. ⟨10.5194/acp-17-3001-2017⟩. ⟨ineris-01863251⟩

Collections

INERIS
110 Consultations
140 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More