P. J. Abbott, Who Food Additives Series 46: Furfuryl Alcohol and Related Substances Available online at, 2016.

P. J. Abbott, L. Aldous, N. Borisenko, S. Coles, O. Fontaine et al., Electrochemistry: general discussion, Faraday Discussions, vol.206, pp.405-426, 1039.
DOI : 10.1039/C7FD90093G

URL : https://hal.archives-ouvertes.fr/hal-02057009

I. Agirrezabal-telleria, C. Garcia-sancho, P. Maireles-torres, and P. L. Arias, Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N 2 stripping. Chin, J. Catal, vol.3412, pp.1402-1406, 2013.

I. Agirrezabal-telleria, Y. Guo, F. Hemmann, P. L. Arias, and E. Kemnitz, -stripping, Catal. Sci. Technol., vol.5, issue.116, pp.1357-1368, 1039.
DOI : 10.1002/cssc.201100648

I. Agirrezabal-telleria, F. Hemmann, C. Jäger, P. L. Arias, and E. Kemnitz, Functionalized partially hydroxylated MgF2 as catalysts for the dehydration of d-xylose to furfural, Journal of Catalysis, vol.305, pp.81-91, 2013.
DOI : 10.1016/j.jcat.2013.05.005

I. Agirrezabal-telleria, A. Larreategui, J. Requies, M. B. Guemez, and P. L. Arias, Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen, Bioresource Technology, vol.102, issue.16, pp.7478-7485, 2011.
DOI : 10.1016/j.biortech.2011.05.015

I. Agirrezabal-telleria, J. Requies, M. B. Güemez, and P. L. Arias, Furfural production from xylose + glucose feedings and simultaneous N2-stripping, Green Chemistry, vol.5, issue.116, 2012.
DOI : 10.1002/cssc.201100648

, Green Chem, vol.14, pp.3132-3140

I. Agirrezabal-telleria, J. Requies, M. B. Güemez, and P. L. Arias, Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts, Applied Catalysis B: Environmental, vol.145, pp.34-42, 2014.
DOI : 10.1016/j.apcatb.2012.11.010

S. K. Al-hubboubi, Z. Raouf, . A. Al, and R. H. Abbood, Corrosionresistance characteristics of concrete containing furfural, J. Eng, vol.18, pp.472-484, 2012.

C. Antonetti, E. Bonari, D. Licursi, O. Nassi, D. Nasso et al., Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters, Molecules, vol.1, issue.12, pp.21232-21253, 2015.
DOI : 10.1155/2015/879531

M. Aresta, A. Dibenedetto, and F. Dumeignil, Biorefinery: from Biomass to Chemicals and Fuels, 2012.
DOI : 10.1515/9783110260281

, Furfural Accident Database Available online at: http://www.aria. developpement-durable.gouv.fr/search-result-accident/?lang=en (Accessed, ARIA, 2016.

A. Bado-nilles, A. O. Diallo, G. Marlair, P. Pandard, L. Chabot et al., Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option???Towards an innovative ???safety by design??? approach, Journal of Hazardous Materials, vol.283, pp.202-210, 2015.
DOI : 10.1016/j.jhazmat.2014.09.023

URL : https://hal.archives-ouvertes.fr/ineris-01864710

H. G. Bernal, L. Bernazzani, and A. M. Galletti, Furfural from corn stover hemicelluloses. A mineral acid-free approach, Green Chem., vol.14, issue.8, pp.3734-3740, 2014.
DOI : 10.1039/c2gc15872h

H. G. Bernal, A. M. Galletti, G. Garbarino, G. Busca, and E. Finocchio, NbP catalyst for furfural production: FT IR studies of surface properties, Applied Catalysis A: General, vol.502, pp.388-398, 2015.
DOI : 10.1016/j.apcata.2015.06.031

P. Bhaumik, P. L. Dhepe, and P. L. Dhepe, Efficient, Stable, and Reusable Silicoaluminophosphate for the One-Pot Production of Furfural from Hemicellulose, ACS Catalysis, vol.3, issue.10, pp.2299-2303, 1039.
DOI : 10.1021/cs400495j

P. Bhaumik and P. L. Dhepe, Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural, Catalysis Today, vol.251, 2015.
DOI : 10.1016/j.cattod.2014.10.042

P. Bhaumik and P. L. Dhepe, Solid acid catalyzed synthesis of furans from carbohydrates, Catalysis Reviews, vol.1993, issue.5, 2016.
DOI : 10.1002/cssc.201301296

J. B. Binder, J. J. Blank, A. V. Cefali, and R. T. Raines, Synthesis of Furfural from Xylose and Xylan, ChemSusChem, vol.96, issue.11, pp.1268-1272, 2010.
DOI : 10.1002/cssc.201000181

URL : http://europepmc.org/articles/pmc4445733?pdf=render

D. Bourg and S. Erkman, Perspectives on Industrial Ecology, 2003.

R. C. Brown and T. R. Brown, Biorenewable Resources: Engineering New Products from Agriculture, 2013.
DOI : 10.1002/9781118524985

S. M. Bruce, Z. Zong, A. Chatzidimitriou, L. E. Avci, J. Q. Bond et al., Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a ??-valerolactone/water solvent, Journal of Molecular Catalysis A: Chemical, vol.422, pp.18-22, 2016.
DOI : 10.1016/j.molcata.2016.02.025

M. J. Campo-molina, J. J. Corral-pérez, R. Mariscal, and M. Lopèz-granados, Silica-poly(styrenesulphonic acid) nanocomposites as promising acid catalysts, Catalysis Today, vol.279, pp.155-163, 2017.
DOI : 10.1016/j.cattod.2016.06.042

A. V. Carvalho, C. Da, A. M. Lopes, and R. ?ukasik, Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction, RSC Advances, vol.1, issue.25, pp.47153-47164, 1039.
DOI : 10.1021/cs200461t

L. Chancelier, A. O. Diallo, C. C. Santini, G. Marlair, T. Gutel et al., Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO 2 , ZrO 2 and mixed-oxide TiO 2 -ZrO 2 under hot compressed water (HCW) condition, Phys. Chem. Chem. Phys. Bioresour. Technol, vol.16, issue.101, pp.4179-4186, 1039.

H. Chen, L. Qin, Y. , and B. , Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5), Biomass and Bioenergy, vol.73, 2015.
DOI : 10.1016/j.biombioe.2014.12.013

L. Cheng, X. Guo, C. Song, G. Yu, Y. Cui et al., High performance mesoporous zirconium phosphate for dehydration of xylose to furfural in aqueous-phase, RSC Advances, vol.30, issue.216, pp.23228-23235, 2013.
DOI : 10.1016/0022-1902(68)80096-X

J. N. Chheda, Y. Román-leshkov, J. A. Dumesic, S. I. Sandler, and D. G. Vlachos, Production of 5- hydroxymethylfurfural and furfural by dehydration of biomass-derived monoand poly-saccharides. Green Chem Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media Conversion of D-xylose into furfural with aluminum and hafnium pillared clays as catalyst, ACS Catal, vol.9, issue.80, pp.342-350, 2007.

W. Daengprasert, P. Boonnoun, N. Laosiripojana, M. Goto, and A. Shotiprak, Application of Sulfonated Carbon-Based Catalyst for Solvothermal Conversion of Cassava Waste to Hydroxymethylfurfural and Furfural, Industrial & Engineering Chemistry Research, vol.50, issue.13, pp.7903-7910, 2011.
DOI : 10.1021/ie102487w

B. Danon, G. Marcotullio, W. F. De-jong, Y. Wang, L. et al., Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis, Green Chem., vol.38, issue.1, pp.39-54, 2014.
DOI : 10.1016/j.indcrop.2012.01.013

A. Deng, Q. Liu, Y. Yan, H. Li, J. Ren et al., A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system, Bioresource Technology, vol.216, pp.754-760, 2016.
DOI : 10.1016/j.biortech.2016.06.002

A. Deng, J. Ren, H. Li, F. Peng, and R. Sun, Corncob lignocellulose for the production of furfural by hydrothermal pretreatment and heterogeneous catalytic process, RSC Advances, vol.34, issue.74, pp.60264-60272, 1039.
DOI : 10.1016/j.biombioe.2009.12.018

A. O. Diallo, G. Fayet, C. Len, and G. Marlair, Evaluation of Heats of Combustion of Ionic Liquids through Use of Existing and Purpose-Built Models, Industrial & Engineering Chemistry Research, vol.51, issue.7, pp.3149-3156, 2012.
DOI : 10.1021/ie2023788

URL : https://hal.archives-ouvertes.fr/ineris-00963366

A. O. Diallo, A. B. Morgan, C. Len, and G. Marlair, An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids, Energy & Environmental Science, vol.168, issue.3, pp.699-710, 1039.
DOI : 10.1016/j.molliq.2012.01.011

URL : https://hal.archives-ouvertes.fr/ineris-00961793

A. S. Dias, S. Lima, P. Brandão, M. Pillinger, J. Rocha et al., Liquid-phase Dehydration of d-xylose over Microporous and Mesoporous Niobium Silicates, Catalysis Letters, vol.7, issue.3-4, pp.179-186, 2006.
DOI : 10.1007/s10562-006-0046-6

A. S. Dias, S. Lima, M. Pillinger, and A. A. Valente, Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural, Carbohydrate Research, vol.341, issue.18, pp.2946-2953, 2006.
DOI : 10.1016/j.carres.2006.10.013

A. S. Dias, S. Lima, M. Pillinger, and A. A. Valente, Modified versions of sulfated zirconia as catalysts for the conversion of xylose to furfural, Catalysis Letters, vol.108, issue.3-4, pp.151-160, 2007.
DOI : 10.1007/s10562-007-9052-6

A. S. Dias, M. Pillinger, and A. A. Valente, Liquid phase dehydration of d-xylose in the presence of Keggin-type heteropolyacids, Applied Catalysis A: General, vol.285, issue.1-2, 2005.
DOI : 10.1016/j.apcata.2005.02.016

A. S. Dias, M. Pillinger, and A. A. Valente, Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts, Journal of Catalysis, vol.229, issue.2, pp.414-423, 2005.
DOI : 10.1016/j.jcat.2004.11.016

A. S. Dias, M. Pillinger, and A. A. Valente, Mesoporous silica-supported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of d-xylose, Microporous and Mesoporous Materials, vol.94, issue.1-3, pp.214-225, 2006.
DOI : 10.1016/j.micromeso.2006.03.035

A. Ebringerová, Structural Diversity and Application Potential of Hemicelluloses, Macromolecular Symposia, vol.52, issue.1, 2005.
DOI : 10.1002/jpln.1998.3581610503

O. Ershova, J. Kanervo, S. Hellsten, H. Sixtu, K. Gairola et al., The role of xylulose as an intermediate in xylose conversion to furfural: insights via experiments and kinetic modelling, RSC Advances, vol.51, issue.451, pp.66727-66757, 2012.
DOI : 10.1021/ie2018367

H. Gao, H. Liu, B. Pang, G. Yu, J. Du et al., Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite, Bioresource Technology, vol.172, pp.453-456, 2014.
DOI : 10.1016/j.biortech.2014.09.026

C. García-sancho, I. Sádaba, R. Moreno-tost, J. Merida-robles, J. Santamaria-gonzales et al., Dehydration of Xylose to Furfural over MCM-41-Supported Niobium-Oxide Catalysts, ChemSusChem, vol.52, issue.109, pp.635-642, 2013.
DOI : 10.1007/s11244-008-9166-0

C. García-sancho, I. Agirrezabal-telleria, M. B. Güemez, and P. Maireles-torres, Dehydration of d-xylose to furfural using different supported niobia catalysts, Applied Catalysis B: Environmental, vol.152, issue.153, 2014.
DOI : 10.1016/j.apcatb.2014.01.013

C. García-sancho, J. M. Rubio-caballero, J. M. Mérida-robles, R. Moreno-tost, J. Santamaria-gonzales et al., Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural, Catalysis Today, vol.234, pp.119-124, 2014.
DOI : 10.1016/j.cattod.2014.02.012

R. S. Goncalves and W. X. De-olivera, Electrochemical Evidences of the Protection Efficiency of Furfural on the Corrosion Processes of Low Carbon Steel in Ethanolic Medium, Journal Of The Brazilian Chemical Society, vol.3, issue.3, pp.92-94, 1992.
DOI : 10.5935/0103-5053.19920019

D. Gupta, E. Ahmad, K. K. Paul, and B. Saha, Efficient utilization of potash alum as a green??catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars, RSC Advances, vol.229, issue.67, pp.41973-41979, 1039.
DOI : 10.1016/j.jcat.2004.11.016

N. K. Gupta, A. Fukuoka, and K. Nakajima, as a Selective and Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and Toluene, ACS Catalysis, vol.7, issue.4, pp.2430-2436, 2017.
DOI : 10.1021/acscatal.6b03682

E. I. Gürbüz, J. M. Gallo, D. M. Alonso, S. G. Wettstein, W. Y. Lim et al., Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in ??-Valerolactone, Angewandte Chemie International Edition, vol.30, issue.4, pp.1270-1274, 2013.
DOI : 10.1080/02773810903419227

E. I. Gürbüz, S. G. Wettstein, and J. A. Dumesic, Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents, ChemSusChem, vol.73, issue.2, pp.383-387, 2012.
DOI : 10.1126/science.73.1899.568-a

M. Hacker, D. Burghardt, L. Fletcher, A. Gordon, and W. Peruzzi, Engineering and Technology, 2009.

C. W. Hall, Biomass as an Alternative Fuel, Journal of Solar Energy Engineering, vol.105, issue.4, 1981.
DOI : 10.1115/1.3266411

I. Harmaajärvi, S. Heinonen, and P. Lahti, Urban form, Transportation and Greenhouse Gas Emissions: Experiences in the Nordic Countries, 2004.

Z. Hricovíniová, Xylans are a valuable alternative resource: Production of d-xylose, d-lyxose and furfural under microwave irradiation, Carbohydrate Polymers, vol.98, issue.2, 2013.
DOI : 10.1016/j.carbpol.2013.07.066

X. Hu, C. Lievens, L. , and C. , Acid-Catalyzed Conversion of Xylose in Methanol-Rich Medium as Part of Biorefinery, ChemSusChem, vol.90, issue.8, pp.1427-1434, 2012.
DOI : 10.1016/S0008-6215(00)85619-0

X. Hu, S. Wang, L. Wu, D. Dong, M. M. Hasan et al., Acid-treatment of C5 and C6 sugar monomers/oligomers: Insight into their interactions, Fuel Processing Technology, vol.126, pp.315-323, 2014.
DOI : 10.1016/j.fuproc.2014.05.024

D. R. Hua, Y. L. Wu, Y. F. Liu, Y. Chen, H. Yang et al., Preparation of furfural and reaction kinetics of xylose dehydration to furfural in high-temperature water, Petroleum Science, vol.39, issue.7, pp.167-172, 2016.
DOI : 10.1016/j.biombioe.2010.07.028

L. W. Jelinsky, T. E. Graedel, R. A. Laudise, D. W. Mccall, P. et al., Industrial ecology: concepts and approaches., Proceedings of the National Academy of Sciences, vol.89, issue.3, pp.793-797, 1992.
DOI : 10.1073/pnas.89.3.793

W. Jeon, C. Ban, J. E. Kim, H. C. Woo, K. et al., Production of furfural from macroalgae-derived alginic acid over Amberlyst-15, Journal of Molecular Catalysis A: Chemical, vol.423, pp.264-269, 2016.
DOI : 10.1016/j.molcata.2016.07.020

W. Jeon, C. Ban, G. Park, H. C. Woo, K. et al., Hydrothermal conversion of alginic acid to furfural catalyzed by Cu(II) ion, Catalysis Today, vol.265, pp.154-162, 2016.
DOI : 10.1016/j.cattod.2015.12.001

W. Jeon, C. Ban, G. Park, T. Yu, J. Suh et al., Catalytic hydrothermal conversion of macroalgae-derived alginate: effect of pH on production of furfural and valuable organic acids under subcritical water conditions, Journal of Molecular Catalysis A: Chemical, vol.399, pp.106-113, 2015.
DOI : 10.1016/j.molcata.2015.01.011

G. H. Jeong, E. G. Kim, S. B. Kim, E. D. Park, K. et al., Fabrication of sulfonic acid modified mesoporous silica shells and their catalytic performance with dehydration reaction of d-xylose into furfural, Microporous and Mesoporous Materials, vol.144, issue.1-3, pp.134-139, 2011.
DOI : 10.1016/j.micromeso.2011.04.002

M. Jin, X. Liu, Y. Ban, Y. Peng, W. Jiao et al., Conversion of xylose into furfural in a MOF-based mixed matrix membrane reactor, Chemical Engineering Journal, vol.305, 2016.
DOI : 10.1016/j.cej.2015.10.115

. J. Eng, , pp.12-16

S. Kaiprommarat, S. Kongparakul, P. Reubroycharoen, G. Guan, and C. Smart, Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent, Fuel, vol.174, pp.189-196, 2016.
DOI : 10.1016/j.fuel.2016.02.011

M. Käldström, N. Kumar, T. Heikkilä, M. Tittla, T. Salmi et al., Formation of furfural in catalytic transformation of levoglucosan over mesoporous materials, ChemCatChem, vol.2201, pp.539-546, 2010.

B. Kamm, P. R. Gruber, and M. Kamm, Biorefineries-Industrial Processes and Products, 2006.

R. Karinen, K. Vilonen, and M. Niemela, Biorefining: Heterogeneously Catalyzed Reactions of Carbohydrates for the Production of Furfural and Hydroxymethylfurfural, ChemSusChem, vol.9, issue.8, pp.1002-1016, 2011.
DOI : 10.1016/j.catcom.2007.12.002

B. Kim, C. S. Jeong, J. M. Kim, S. B. Park, S. H. Park et al., Ex situ catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts, Catalysis Today, vol.265, pp.184-191, 2016.
DOI : 10.1016/j.cattod.2015.08.031

E. S. Kim, S. Liu, M. M. Abu-omar, and N. S. Mosier, Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating, Energy & Fuels, vol.26, issue.2, pp.1298-1304, 1021.
DOI : 10.1021/ef2014106

T. H. Kim, H. J. Ryu, and K. K. Oh, Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural, Bioresource Technology, vol.218, pp.367-372, 2016.
DOI : 10.1016/j.biortech.2016.06.106

E. Lam, J. H. Chong, E. Majid, Y. Liu, S. Hrapovic et al., Carbocatalytic dehydration of xylose to furfural in water, Carbon, vol.50, issue.3, pp.1033-1043, 2012.
DOI : 10.1016/j.carbon.2011.10.007

E. Lam, E. Majid, A. C. Leung, J. M. Chong, K. A. Mahmoud et al., Synthesis of Furfural from Xylose by Heterogeneous and Reusable Nafion Catalysts, ChemSusChem, vol.63, issue.4, pp.535-541, 2011.
DOI : 10.1351/pac199163091227

K. Lamminpää, J. Ahola, J. K. And-tanskanen, J. Ahola, and J. And-tanskanen, Kinetics of Xylose Dehydration into Furfural in Formic Acid, Industrial & Engineering Chemistry Research, vol.51, issue.18, pp.6297-6303, 2012.
DOI : 10.1021/ie2018367

J. P. Lange, E. Van-der-heide, J. Van-buijtenen, P. , and R. , Furfural-A Promising Platform for Lignocellulosic Biofuels, ChemSusChem, vol.12, issue.183, pp.150-166, 2012.
DOI : 10.1016/S0896-8446(98)00087-4

L. Guenic, S. Delbecq, F. Ceballos, C. , L. et al., Microwave-assisted dehydration of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system, Journal of Molecular Catalysis A: Chemical, vol.410, pp.1-7, 2015.
DOI : 10.1016/j.molcata.2015.08.019

L. Guenic, S. Gergela, D. Delbecq, F. , L. et al., Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction, Molecules, vol.85, issue.8, pp.1102-1111, 2016.
DOI : 10.1002/cssc.201600446

J. Lessard, J. F. Morin, J. F. Wehrung, D. Magnin, C. et al., , 2010.

, High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran, Top. Catal, vol.53, pp.1231-1234

B. Li, S. Varanasi, R. , and P. , High yield aldose???ketose transformation for isolation and facile conversion of biomass sugar to furan, Green Chemistry, vol.16, issue.418, pp.2149-2157, 2013.
DOI : 10.1007/s10570-009-9327-8

H. Li, X. Chen, J. Ren, H. Deng, F. Peng et al., Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment, Biotechnology for Biofuels, vol.14, issue.1, 2015.
DOI : 10.1039/c2gc35759c

H. Li, A. Deng, J. Ren, C. Liu, Q. Lu et al., Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst, Bioresource Technology, vol.158, pp.313-320, 2014.
DOI : 10.1016/j.biortech.2014.02.059

H. Li, S. Y. Wang, W. J. Wang, J. C. Ren, F. Peng et al., One-Step Heterogeneous Catalytic Process for the Dehydration of Xylan into Furfural, BioResources, vol.8, issue.3, pp.3200-3211, 2013.
DOI : 10.15376/biores.8.3.3200-3211

H. Li, W. Wang, J. Ren, and R. Sun, Preparation and Characterization of SO<SUP>2</SUP><SUP>???</SUP><SUB>4</SUB>/TiO<SUB>2</SUB>???ZrO<SUB>2</SUB>/La<SUP>3+</SUP> and Their Photocatalytic Performance for the Dehydration of Xylose to Furfural, Journal of Biobased Materials and Bioenergy, vol.8, issue.1, pp.50-58, 2014.
DOI : 10.1166/jbmb.2014.1406

H. Li, X. Wang, C. Liu, J. Ren, X. Zhao et al., An efficient pretreatment for the selectively hydrothermal conversion of corncob into furfural: The combined mixed ball milling and ultrasonic pretreatments, Industrial Crops and Products, vol.94, pp.721-728, 2016.
DOI : 10.1016/j.indcrop.2016.09.052

W. Li, Y. Zhu, Y. Lu, Q. Liu, S. Guan et al., Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst, Bioresource Technology, vol.245, pp.258-265, 2017.
DOI : 10.1016/j.biortech.2017.08.077

X. Li, T. Pan, J. Deng, Y. Fu, H. S. Xu et al., -xylose to furfural over a tantalum-based catalyst in batch and continuous process, RSC Advances, vol.12, issue.124, pp.70139-70145, 2011.
DOI : 10.1039/b927424c

S. Lima, A. Fernandes, M. M. Antunes, M. Pillinger, F. Riberiro et al., Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates, Catalysis Letters, vol.114, issue.1-2, pp.41-47, 2010.
DOI : 10.1007/978-1-4684-5787-2_1

S. Lima, P. Neves, M. M. Antunes, M. Pillinger, N. Ignatycu et al., Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids, Applied Catalysis A: General, vol.363, issue.1-2, pp.93-99, 2009.
DOI : 10.1016/j.apcata.2009.04.049

H. Liu, J. Chen, Y. Zhao, W. , and S. , Conversion of C5 Carbohydrates into Furfural catalyzed by SO 3 H-functionalized ionic liquid in renewable ?-valerolactone, Energy Fuels, vol.31, pp.3929-3934, 2017.

M. Lopes, K. Dussan, and J. J. Leahy, Enhancing the conversion of Dxylose into furfural at low temperature using chloride salts as co-catalysts, 2017.

, Catalytic combination of AlCl 3 and formic acid, Chem. Eng. J, vol.323, pp.278-286

H. Lu, S. Liu, M. Zhang, F. Heng, X. Shi et al., Investigation of the strengthening process for liquid hot water pretreatments A simple two-step method for the selective conversion of hemicellulose in pubescens to furfural, Energy Fuels ACS Sustain. Chem. Eng, vol.30, issue.5, pp.8137-8147, 2016.

O. D. Mante, T. E. Amidon, A. Stipanovic, and S. P. Babu, Integration of biomass pretreatment with fast pyrolysis: An evaluation of electron beam (EB) irradiation and hot-water extraction (HWE), Journal of Analytical and Applied Pyrolysis, vol.110, issue.96, pp.44-54, 2014.
DOI : 10.1016/j.jaap.2014.08.004

G. Marcotullio, D. Jong, W. Matsagar, B. M. Dhepe, P. L. Matsagar et al., Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions Effect of cations, anions and H + concentrations of acidic ionic liquids in the valorization of polysaccharide into furfural Conversion of concentrated sugar solution into 5-hydroxymethylfurfural and furfural using Brönsted acidic ionic liquid, Green Chem. New J. Chem. Catal. Sci. Technol, vol.12, issue.5, pp.1739-1746, 1039.

A. Mazar, N. Jemaa, A. Dajani, W. W. Marinova, M. Perrier et al., Furfural production from a pre-hydrolysate generated using aspen and maple chips, Biomass and Bioenergy, vol.104, pp.8-16, 2017.
DOI : 10.1016/j.biombioe.2017.05.016

M. G. Mazzotta, D. Gupta, B. Saha, A. K. Patra, A. Bhaumik et al., Efficient Solid Acid Catalyst Containing Lewis and Br??nsted Acid Sites for the Production of Furfurals, ChemSusChem, vol.3, issue.436, pp.2342-2350, 2014.
DOI : 10.1002/cssc.201000181

J. A. Melero, J. Iglesias, and A. Garcia, Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges, Energy & Environmental Science, vol.12, issue.190, pp.7393-7420, 2012.
DOI : 10.1039/b923907c

M. A. Mellmer, C. Sener, J. M. Gallo, J. S. Luterbacher, D. M. Alonso et al., Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions, Angewandte Chemie International Edition, vol.111, issue.44, pp.11872-11875, 2014.
DOI : 10.1021/jp065403l

URL : https://infoscience.epfl.ch/record/201778/files/Mellmer et al. - 2014 - Solvent Effects in Acid-Catalyzed Biomass Conversi.pdf

A. Mittal, S. K. Black, T. B. Vinzart, M. O-'brien, M. P. Tucker et al., Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System, ACS Sustainable Chemistry & Engineering, vol.5, issue.7, pp.5694-5701, 2017.
DOI : 10.1021/acssuschemeng.7b00215

A. K. Mohamed, K. M. Ibrahim, and M. N. Moussa, Some Furfural Hydrazone Compounds as Corrosion Inhibitors for Iron in Nitric Acid. Anti- Corrosion Methods Mater, pp.4-7, 1989.
DOI : 10.1108/eb007254

M. J. Molina, M. L. Granados, A. Gervasini, C. , and P. , Exploitment of niobium oxide effective acidity for xylose dehydration to furfural, Catalysis Today, vol.254, 2015.
DOI : 10.1016/j.cattod.2015.01.018

M. J. Molina, R. Mariscal, M. Ojeda, L. Granados, and M. , Cyclopentyl methyl ether: A green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural, Bioresource Technology, vol.126, pp.321-327, 2012.
DOI : 10.1016/j.biortech.2012.09.049

J. Moncada, C. A. Cardona, J. C. Higuita, J. J. Velez, and F. E. Lopez-suarez, Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, techno-economic and environmental assessments, Chemical Engineering Science, vol.140, pp.309-318, 2016.
DOI : 10.1016/j.ces.2015.10.027

A. R. Morais and R. Lukasik, -adjunctive dehydration of xylose to furfural in aqueous media with THF, Green Chemistry, vol.123, issue.8, pp.2331-2334, 2016.
DOI : 10.1016/j.biortech.2012.07.031

A. R. Morais, M. D. Matuchaki, J. Andreaus, R. T. Lukasik, V. V. Ordomsky et al., A green and efficient approach of selective conversion of xylose and biomass hemicelluloses into furfural in aqueous media using high-pressure CO2 as sustainable catalyst Water-Tolerant Solid Acid Catalysts Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural, Green Chem. Chem. Rev. Appl. Catal. A Gen, vol.18, issue.451, pp.2985-2994, 2002.

G. Park, W. Jeon, C. Ban, H. C. Woo, K. et al., Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent, Energy Conversion and Management, vol.118, pp.135-141, 2016.
DOI : 10.1016/j.enconman.2016.03.091

S. Peleteiro, C. Da, A. M. Lopes, G. Garrote, R. B. Lukasik et al., Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent, Industrial Crops and Products, vol.77, pp.163-166, 2015.
DOI : 10.1016/j.indcrop.2015.08.048

S. Peleteiro, C. Da, A. M. Lopes, G. Garrote, J. C. Parajo et al., Simple and Efficient Furfural Production from Xylose in Media Containing 1-Butyl-3-Methylimidazolium Hydrogen Sulfate, Industrial & Engineering Chemistry Research, vol.54, issue.33, pp.8368-8373, 2015.
DOI : 10.1021/acs.iecr.5b01771

URL : http://repositorio.lneg.pt/bitstream/10400.9/2881/1/industrialEngineeringChemistryResearch_Vol.54_8368.pdf

S. Peleteiro, G. Garrote, V. Santos, and J. C. Parajo, Conversion of hexoses and pentoses into furans in an ionic liquid, Afinidad, vol.71, pp.202-206, 2014.

S. Peleteiro, S. Rivas, J. L. Alonso, V. Santos, and J. C. Parajo, Furfural production using ionic liquids: A review, Bioresource Technology, vol.202, pp.181-191, 2016.
DOI : 10.1016/j.biortech.2015.12.017

S. Peleteiro, V. Santos, G. Garrote, and J. C. Parajo, Furfural production from Eucalyptus wood using an Acidic Ionic Liquid, Carbohydrate Polymers, vol.146, 2016.
DOI : 10.1016/j.carbpol.2016.03.049

S. Peleteiro, V. Santos, and J. C. Parajo, Furfural production in biphasic media using an acidic ionic liquid as a catalyst, Carbohydrate Polymers, vol.153, pp.421-428, 2016.
DOI : 10.1016/j.carbpol.2016.07.093

D. W. Rackemann, J. P. Bartley, and W. O. Doherty, Methanesulfonic acid-catalyzed conversion of glucose and xylose mixtures to levulinic acid and furfural, Industrial Crops and Products, vol.52, pp.46-57, 2014.
DOI : 10.1016/j.indcrop.2013.10.026

D. W. Rackermann, J. P. Bartley, H. D. Harrison, and W. O. Doherty, The effect of pretreatment on methanesulfonic acid-catalyzed hydrolysis of bagasse to levulinic acid, formic acid, and furfural, RSC Adv., vol.1, issue.78, pp.74525-74535, 1039.
DOI : 10.1002/ejlt.200300880

C. Rong, X. Ding, Y. Zhu, Y. Li, L. Wang et al., Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts, Carbohydrate Research, vol.350, pp.77-80, 2012.
DOI : 10.1016/j.carres.2011.11.023

I. Sádaba, S. Lima, A. A. Valente, G. Lopez, and M. , Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species, Carbohydrate Research, vol.346, issue.17, pp.2785-2791, 2011.
DOI : 10.1016/j.carres.2011.10.001

R. Sahu and P. L. Dhepe, A One-Pot Method for the Selective Conversion of Hemicellulose from Crop Waste into C5 Sugars and Furfural by Using Solid Acid Catalysts, ChemSusChem, vol.77, issue.4, pp.751-761, 2012.
DOI : 10.1016/j.micromeso.2004.06.030

E. Sairanen, R. Karinen, and J. And-lehtonen, Comparison of Solid Acid-Catalyzed and Autocatalyzed C5 and C6 Sugar Dehydration Reactions with Water as a Solvent, Catalysis Letters, vol.6, issue.11, pp.1839-1850, 2014.
DOI : 10.1002/cssc.201300332

. Sandvik-material and . Technology, Furfural -Sandvik Materials Technology Available online at: http://smt.sandvik.com/en/materials-center/corrosiontables, 2016.

V. Scarth, Prevention of Corrosion in Furfural Rerun Systems. U.S. Patent No. 2,416,500, 1947.

P. A. Schieb, H. Lescieux-katir, M. Thénot, and B. Clément-larosiere, Biorefinery 2030: Future Prospects for the Bioeconomy, 2015.
DOI : 10.1007/978-3-662-47374-0

B. Seemala, V. Haritos, and A. Tanksale, Levulinic Acid as a Catalyst for the Production of 5-Hydroxymethylfurfural and Furfural from Lignocellulose Biomass, Scientific Committee on Consumer Safety, pp.640-647, 2012.
DOI : 10.1039/C4GC00747F

N. Shi, Q. Liu, T. Wang, T. J. Wang, and C. L. Cai, Production of 5-hydroxymethylfurfural and furfural from lignocellulosic biomass in watertetrahydrofuran media with sodium bisulfate, Chin. J. Chem. Phys, vol.2828, pp.650-656, 2015.

X. Shi, Y. Wu, P. Li, H. Yi, M. Yang et al., Catalytic conversion of xylose to furfural over the solid acid /ZrO2???Al2O3/SBA-15 catalysts, Carbohydrate Research, vol.346, issue.4, pp.480-487, 2011.
DOI : 10.1016/j.carres.2011.01.001

C. Sievers, I. Musin, T. Marzialetti, M. B. Olante, P. K. Agrawal et al., Acid-Catalyzed Conversion of Sugars and Furfurals in an Ionic-Liquid Phase, ChemSusChem, vol.42, issue.7, pp.665-671, 2009.
DOI : 10.1002/jlac.18812060112

B. Sorensen, P. Breeze, T. Storvick, Y. Yang, A. Da-rosa et al., Renewable Energy Focus Handbook, 2009.

F. Tao, H. Song, and L. Chou, Hydrolysis of cellulose in SO3H-functionalized ionic liquids, Bioresource Technology, vol.102, issue.19, pp.9000-9006, 2011.
DOI : 10.1016/j.biortech.2011.06.067

F. Tao, H. Song, and L. Chou, Efficient conversion of cellulose into furans catalyzed by metal ions in ionic liquids, Journal of Molecular Catalysis A: Chemical, vol.357, 2012.
DOI : 10.1016/j.molcata.2012.01.010

, Recommendations on the Transport of Dangerous Goods -Model Regulations Available online at: https, United Nations Geneva: United Nations, vol.1, 2009.

, Globally Harmonized System of Classification and Labelling of Chemicals (GHS) New York, NY; Geneva: United Nations Available online at: https://www.unece.org/fileadmin/DAM/trans, United Nations, 2015.

P. G. Urben and M. J. Pitt, Bretherick's Handbook of Reactive Chemical Hazards, 2007.

L. Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins, and K. R. Saddon, Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride, Green Chemistry, vol.47, issue.86, pp.390-396, 1039.
DOI : 10.1039/b817882h

V. Jr, S. Donate, and P. M. , Microwave-assisted green production of furfural from D-xylose of sugarcane bagasse, BioRes, vol.10, 2015.

S. P. Ventura, P. De-morais, J. A. Coelho, T. Sintra, J. A. Coutinho et al., Evaluating the toxicity of biomass derived platform chemicals, Green Chemistry, vol.72, issue.17, pp.4733-4742, 1039.
DOI : 10.1016/j.ecoenv.2008.05.008

V. Stein, T. Grande, P. M. Leitner, W. Dominguez-de-maria, and P. , , 2011.

, Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock, ChemSusChem, vol.4

M. Wang, C. Liu, Q. Li, and D. Zhang, Theoretical insight into the conversion of xylose to furfural in the gas phase and water, Journal of Molecular Modeling, vol.41, issue.26, pp.1-10, 2015.
DOI : 10.1007/s00894-015-2843-6

S. Wang, Y. Zhao, H. Liu, J. Chen, L. Zhu et al., Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable ??-valerolactone, Green Chemistry, vol.61, issue.16, pp.3969-3879, 1039.
DOI : 10.1016/j.supflu.2011.09.005

Y. Wang, F. Delbecq, W. Kwapinski, L. , and C. , Application of sulfonated carbon-based catalyst for the furfural production from d -xylose and xylan in a microwave-assisted biphasic reaction, Molecular Catalysis, vol.438, pp.167-172, 2017.
DOI : 10.1016/j.mcat.2017.05.031

Y. Wang, T. Len, Y. Huang, A. D. Taboada, A. N. Boa et al., -Xylose and Xylan into Furfural, ACS Sustainable Chemistry & Engineering, vol.5, issue.1, pp.392-398, 1039.
DOI : 10.1021/acssuschemeng.6b01780

T. Werpy and G. Petersen, Top Value Added Chemicals from Biomass Volume I ? Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge, CA: Pacific Northwest National Laboratory. Available online at: https, 2004.

Y. Xing, B. Yan, Z. Yuan, K. C. Sun, N. Radacsi et al., Mesoporous tantalum phosphates: preparation, acidity and catalytic performance for xylose dehydration to produce furfural, RSC Advances, vol.7, issue.124, pp.59081-59090, 2016.
DOI : 10.1039/B500689A

H. Xu, H. Zhao, H. Song, Z. Miao, J. Yang et al., Functionalized ionic liquids supported on silica as mild and effective heterogeneous catalysts for dehydration of biomass to furan derivatives, Journal of Molecular Catalysis A: Chemical, vol.410, pp.235-241, 2015.
DOI : 10.1016/j.molcata.2015.09.020

W. Xu, S. Zhang, J. Lu, and Q. Cai, Furfural production from corncobs using thiourea as additive, Environmental Progress & Sustainable Energy, vol.2, issue.3, pp.690-695, 2017.
DOI : 10.1021/j150009a001

Z. Xu, W. Li, Z. Du, H. Wu, H. Jameel et al., Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in ??-valerolactone, Bioresource Technology, vol.198, pp.764-771, 2015.
DOI : 10.1016/j.biortech.2015.09.104

T. Yang, Y. H. Zhou, S. Z. Zhu, H. Pan, and Y. B. Huang, Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a ??-Valerolactone/Water Biphasic Solvent under Microwave Conditions, ChemSusChem, vol.2, issue.20, pp.4066-4079, 2017.
DOI : 10.1002/slct.201700334

W. Yang, P. Li, D. Bo, C. , and H. , The optimization of formic acid hydrolysis of xylose in furfural production, Carbohydrate Research, vol.357, 2012.
DOI : 10.1016/j.carres.2012.05.020

W. Yang, P. Li, D. Bo, H. Chang, X. Wang et al., Optimization of furfural production from d-xylose with formic acid as catalyst in a reactive extraction system, Bioresource Technology, vol.133, pp.361-369, 2013.
DOI : 10.1016/j.biortech.2013.01.127

Y. Yang, C. W. Hu, and M. M. Abu-omar, Synthesis of Furfural from Xylose, Xylan, and Biomass Using AlCl3???6???H2O in Biphasic Media via Xylose Isomerization to Xylulose, ChemSusChem, vol.25, issue.2, pp.405-410, 2012.
DOI : 10.1002/btpr.142

M. Yazdizadeh, M. R. Jafarinasr, and A. Safekordi, A new catalyst for the production of furfural from bagasse, RSC Advances, vol.29, issue.61, pp.55778-55785, 2016.
DOI : 10.1016/j.ijrefrig.2006.01.008

Y. Wang, F. Delbecq, R. S. Varma, L. , and C. , Comprehensive study on expeditious conversion of pre-hydrolyzed alginic acid to furfural in Cu(II) biphasic systems using microwaves, Molecular Catalysis, vol.445, 2018.
DOI : 10.1016/j.mcat.2017.11.013

URL : https://hal.archives-ouvertes.fr/hal-02148556

O. Yemi¸syemi¸s and G. Mazza, Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction, Bioresource Technology, vol.102, issue.15, pp.7371-7378, 2011.
DOI : 10.1016/j.biortech.2011.04.050

T. L. Yong, N. Mohamad, Y. , and N. N. , Furfural Production from Oil Palm Biomass Using a Biomass-derived Supercritical Ethanol Solvent and Formic Acid Catalyst, Procedia Engineering, vol.148, pp.392-400, 2016.
DOI : 10.1016/j.proeng.2016.06.495

C. G. Yoo, S. Zhang, and X. Pan, Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system, RSC Advances, vol.64, issue.1, pp.300-308, 1039.
DOI : 10.1021/acs.jafc.6b03807

K. Yoshida, H. Nanao, Y. Kiyozumi, K. Sato, O. Sato et al., Furfural production from xylose and bamboo powder over chabazite-type zeolite prepared by interzeolite conversion method, Journal of the Taiwan Institute of Chemical Engineers, vol.79, pp.55-59, 2017.
DOI : 10.1016/j.jtice.2017.05.035

S. J. You, Y. T. Kim, and E. D. Park, Liquid-phase dehydration of d-xylose over silica???alumina catalysts with different alumina contents, Reaction Kinetics, Mechanisms and Catalysis, vol.83, issue.2, pp.521-534, 2014.
DOI : 10.1016/j.fuel.2003.10.015

J. Zhang, J. Zhuang, L. Lin, S. Liu, and Z. Zhang, Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase, Biomass and Bioenergy, vol.39, pp.73-77, 2012.
DOI : 10.1016/j.biombioe.2010.07.028

L. Zhang, G. Xi, Z. Chen, D. Jiang, H. Yu et al., Highly selective conversion of glucose into furfural over modified zeolites, Chemical Engineering Journal, vol.307, pp.868-876, 2017.
DOI : 10.1016/j.cej.2016.09.001

L. Zhang, G. Xi, J. Zhang, H. Yu, W. et al., Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethyl furfural, Bioresour. Technol, vol.244, pp.656-661, 2017.

L. Zhang, H. Yu, P. Wang, H. Deng, and X. Peng, Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid, Bioresource Technology, vol.130, pp.110-116, 2013.
DOI : 10.1016/j.biortech.2012.12.018

T. Zhang, R. Kumar, and .. C. Wyman, Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass, RSC Advances, vol.28, issue.25, pp.9809-9819, 2013.
DOI : 10.1002/jps.3030490909