S. E. Boas, M. I. Navarro-jimenez, R. M. Merks, and J. G. Blom, A global sensitivity analysis approach for morphogenesis models, BMC Systems Biology, vol.316, issue.8, p.85, 2015.
DOI : 10.1016/j.yexcr.2010.04.001

F. Y. Bois, GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models, Bioinformatics, vol.24, issue.17, pp.1453-1454, 2009.
DOI : 10.1093/bioinformatics/btn338

URL : https://hal.archives-ouvertes.fr/ineris-00961935

F. Campolongo, J. Cariboni, and A. Saltelli, An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software, vol.22, issue.10, 2007.
DOI : 10.1016/j.envsoft.2006.10.004

W. Y. Chen, Y. H. Cheng, N. H. Hsieh, B. C. Wu, W. C. Chou et al., Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice, Int. J. Nanomed, vol.10, pp.6277-6292, 2015.

W. A. Chiu, J. L. Campbell, H. J. Clewell, Y. H. Zhou, F. A. Wright et al., Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse, Environmental Health Perspectives, vol.122, pp.456-463, 2014.
DOI : 10.1289/ehp.1307623

W. A. Chiu, M. S. Okino, and M. V. Evans, Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach, Toxicology and Applied Pharmacology, vol.241, issue.1, pp.36-60, 2009.
DOI : 10.1016/j.taap.2009.07.032

R. Confalonieri, G. Bellocchi, S. Tarantola, M. Acutis, M. Donatelli et al., Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters, Environmental Modelling & Software, vol.25, issue.4, pp.479-488, 2010.
DOI : 10.1016/j.envsoft.2009.10.005

R. I. Garcia, J. G. Ibrahim, J. F. Wambaugh, E. M. Kenyon, and R. W. Setzer, Identifiability of PBPK models with applications to dimethylarsinic acid exposure, Journal of Pharmacokinetics and Pharmacodynamics, vol.64, issue.4, pp.591-609, 2015.
DOI : 10.1111/1467-9868.00353

A. Gelman, F. Bois, and J. Jiang, Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions, Journal of the American Statistical Association, vol.55, issue.436, 1996.
DOI : 10.2307/2533402

. Assoc, , pp.1400-1412

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari et al., Bayesian Data Analysis, Boca Raton, 2013.

A. Gelman, R. , and D. B. , Inference from Iterative Simulation Using Multiple Sequences, Statistical Science, vol.7, issue.4, pp.457-472, 1992.
DOI : 10.1214/ss/1177011136

L. Gibiansky, E. Gibiansky, and R. Bauer, Comparison of Nonmem 7.2 estimation methods and parallel processing efficiency on a target-mediated drug disposition model, Journal of Pharmacokinetics and Pharmacodynamics, vol.98, issue.1, pp.17-35, 2012.
DOI : 10.1016/j.cmpb.2009.09.012

J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener, Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrology and Earth System Sciences, vol.17, issue.7, pp.2893-2903, 2013.
DOI : 10.5194/hess-17-2893-2013-supplement

J. Herman and W. Usher, SALib: An open-source Python library for Sensitivity Analysis, The Journal of Open Source Software, vol.2, issue.9, 2017.
DOI : 10.1016/j.matcom.2009.01.023

M. J. Jansen, Analysis of variance designs for model output, Computer Physics Communications, vol.117, issue.1-2, pp.35-43, 1999.
DOI : 10.1016/S0010-4655(98)00154-4

H. Jones, R. , and K. , Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development, CPT: Pharmacometrics & Systems Pharmacology, vol.13, issue.8, 2013.
DOI : 10.1124/dmd.110.032649

G. Langdon, I. Gueorguieva, L. Aarons, and M. Karlsson, Linking preclinical and clinical whole-body physiologically based pharmacokinetic models with prior distributions in NONMEM, European Journal of Clinical Pharmacology, vol.13, issue.5, pp.485-498, 2007.
DOI : 10.1177/074823379701300401

G. Li, H. Rabitz, P. E. Yelvington, O. O. Oluwole, F. Bacon et al., Global Sensitivity Analysis for Systems with Independent and/or Correlated Inputs, The Journal of Physical Chemistry A, vol.114, issue.19, pp.6022-6032, 1021.
DOI : 10.1021/jp9096919

C. M. Liao, T. L. Lin, N. H. Hsieh, C. , and W. Y. , Assessing the arsenic-contaminated rice (Oryza sativa) associated children skin lesions, Journal of Hazardous Materials, vol.176, issue.1-3, pp.239-251, 2010.
DOI : 10.1016/j.jhazmat.2009.11.019

G. D. Loizou, K. Mcnally, K. Jones, and J. Cocker, The application of global sensitivity analysis in the development of a physiologically based pharmacokinetic model for m-xylene and ethanol co-exposure in humans, Frontiers in Pharmacology, vol.6, 2015.
DOI : 10.3389/fphar.2015.00135

A. Lumen, K. Mcnally, N. George, J. W. Fisher, and G. D. Loizou, Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system, Frontiers in Pharmacology, vol.89, issue.31, 2015.
DOI : 10.1038/clpt.2010.298

M. A. Lyons, B. Reisfeld, R. S. Yang, and A. J. Lenaerts, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.57, issue.4, pp.1763-1771, 2013.
DOI : 10.1128/AAC.01567-12

K. Mcnally, R. Cotton, J. Cocker, K. Jones, M. Bartels et al., -Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation, Journal of Toxicology, vol.57, issue.1, p.760281, 2012.
DOI : 10.1016/j.tox.2010.06.007

K. Mcnally, R. Cotton, and G. D. Loizou, A Workflow for Global Sensitivity Analysis of PBPK Models, Frontiers in Pharmacology, vol.2, 2011.
DOI : 10.3389/fphar.2011.00031

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, pp.161-174, 1991.
DOI : 10.2307/1266468

A. B. Owen, Better estimation of small sobol' sensitivity indices, ACM Transactions on Modeling and Computer Simulation, vol.23, issue.2, 2013.
DOI : 10.1145/2457459.2457460

URL : http://arxiv.org/pdf/1204.4763

S. A. Peters, Identification of Intestinal Loss of a Drug through Physiologically Based Pharmacokinetic??Simulation of Plasma??Concentration-Time Profiles, Clinical Pharmacokinetics, vol.41, issue.4, pp.245-259, 2008.
DOI : 10.1016/j.bbagen.2004.08.013

F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier et al., Sensitivity analysis of environmental models: A systematic review with practical workflow, Environmental Modelling & Software, vol.79, pp.214-232, 2016.
DOI : 10.1016/j.envsoft.2016.02.008

P. S. Price, R. B. Conolly, C. F. Chaisson, E. A. Gross, J. S. Young et al., Modeling Interindividual Variation in Physiological Factors Used in PBPK Models of Humans, Critical Reviews in Toxicology, vol.10, issue.3, pp.469-503, 1080.
DOI : 10.1088/0143-0815/10/3/001

G. Pujol, B. Iooss, A. J. Boumhaout, K. With-contributions-from, S. D. Veiga et al., Sensitivity: Global Sensitivity Analysis of Model Outputs Available online at: https://cran.r-project, 2017.

M. Ratto, P. C. Young, R. Romanowicz, F. Pappenberger, A. Saltelli et al., Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology, Hydrology and Earth System Sciences, vol.11, issue.4, pp.1249-1266, 2007.
DOI : 10.5194/hess-11-1249-2007

URL : https://hal.archives-ouvertes.fr/hal-00298778

B. Reisfeld, A. N. Mayeno, and . Edn, Computational Toxicology, vol.I, 2012.

C. L. Ring, R. G. Pearce, R. W. Setzer, B. A. Wetmore, and J. F. Wambaugh, Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability, Environment International, vol.106, pp.105-118, 2017.
DOI : 10.1016/j.envint.2017.06.004

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116525

C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm et al., Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model, Geoscientific Model Development, vol.8, issue.7, pp.1899-1918, 2015.
DOI : 10.5194/gmd-8-1899-2015-supplement

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto et al., Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, vol.181, issue.2, pp.259-270, 2010.
DOI : 10.1016/j.cpc.2009.09.018

A. Saltelli, S. Tarantola, C. , and K. P. , A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output, Technometrics, vol.60, issue.1, pp.39-56, 1999.
DOI : 10.2307/2371267

F. Sarrazin, F. Pianosi, and T. Wagener, Global Sensitivity Analysis of environmental models: Convergence and validation, Environmental Modelling & Software, vol.79, 2016.
DOI : 10.1016/j.envsoft.2016.02.005

URL : https://doi.org/10.1016/j.envsoft.2016.02.005

W. Slob, P. H. Janssen, and J. M. Van-den-hof, Structural Identifiability of PBPK Models: Practical Consequences for Modeling Strategies and Study Designs, Critical Reviews in Toxicology, vol.48, issue.3, pp.261-272, 1997.
DOI : 10.1007/978-1-4684-0374-9

B. J. Smith, Boa: Bayesian Output Analysis Program (BOA) for MCMC Available online at: https://cran.r-project.org, 2016.

N. Tsamandouras, A. Rostami-hodjegan, and L. Aarons, Combining the ???bottom up??? and ???top down??? approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data, British Journal of Clinical Pharmacology, vol.39, issue.Suppl. 2, pp.48-55, 2015.
DOI : 10.1007/s10928-012-9280-2

P. A. Vanrolleghem, G. Mannina, A. Cosenza, and M. B. Neumann, Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods, Journal of Hydrology, vol.522, pp.339-352, 2015.
DOI : 10.1016/j.jhydrol.2014.12.056

URL : https://iris.unipa.it/bitstream/10447/150574/1/VAnrolleghemetal_JHydrology2015pdf.pdf

T. Wendling, N. Tsamandouras, S. Dumitras, E. Pigeolet, K. Ogungbenro et al., Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data, The AAPS Journal, vol.18, issue.1, pp.196-209, 2015.
DOI : 10.1208/s12248-015-9840-7

T. J. Woodruff and F. Y. Bois, Optimization issues in physiological toxicokinetic modeling: a case study with benzene, Toxicology Letters, vol.69, issue.2, pp.181-196, 1993.
DOI : 10.1016/0378-4274(93)90103-5

J. W. Yates, Structural Identifiability of Physiologically Based Pharmacokinetic Models, Journal of Pharmacokinetics and Pharmacodynamics, vol.148, issue.10, pp.421-439, 2006.
DOI : 10.1161/01.RES.65.4.997

X. Y. Zhang, M. N. Trame, L. J. Lesko, and S. Schmidt, Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models, CPT: Pharmacometrics & Systems Pharmacology, vol.67, issue.2, pp.69-79, 2015.
DOI : 10.1158/0008-5472.CAN-07-0238

T. J. Zurlinden, R. , B. Zurlinden, T. J. , R. et al., Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach Characterizing the effects of race/ethnicity on acetaminophen pharmacokinetics using physiologically based pharmacokinetic modeling, Eur. J. Drug Metab. Pharmacokinet. Eur. J. Drug Metab. Pharmacokinet, vol.41, issue.42, pp.143-153, 2016.