S. Bakand, A. Hayes, and F. Dechsakulthorn, Nanoparticles: a review of particle toxicology following inhalation exposure, Inhalation Toxicology, vol.33, issue.2, pp.125-160, 2012.
DOI : 10.1016/S1369-7021(04)00081-1

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, Journal of Nanoparticle Research, vol.43, issue.9, p.1109, 2012.
DOI : 10.1021/es803621k

A. Oomen, P. Bos, T. Fernandes, K. Hund-rinke, D. Boraschi et al., Concern-driven integrated approaches to nanomaterial testing and assessment ??? report of the NanoSafety Cluster Working Group 10, Nanotoxicology, vol.31, issue.1, pp.334-382, 2014.
DOI : 10.3109/17435390.2010.512986

URL : http://europepmc.org/articles/pmc4002633?pdf=render

A. Nel, T. Xia, H. Meng, X. Wang, S. Lin et al., Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening, Accounts of Chemical Research, vol.46, issue.3, pp.607-628, 2013.
DOI : 10.1021/ar300022h

F. Joris, B. Manshian, K. Peynshaert, D. Smedt, S. Braeckmans et al., Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro???in vivo gap, Chemical Society Reviews, vol.13, issue.suppl 1, pp.8339-59, 2013.
DOI : 10.3390/ijms13055554

K. Berube, M. Aufderheide, D. Breheny, R. Clothier, R. Combes et al., In vitro models of inhalation toxicity and disease. The report of a FRAME workshop, ATLA, vol.37, issue.1, pp.89-141, 2009.

H. Paur, F. Cassee, J. Teeguarden, H. Fissan, S. Diabate et al., In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung???A dialog between aerosol science and biology, Journal of Aerosol Science, vol.42, issue.10, pp.668-92, 2011.
DOI : 10.1016/j.jaerosci.2011.06.005

C. Sayes, K. Reed, and D. Warheit, Assessing Toxicity of Fine and Nanoparticles: Comparing In Vitro Measurements to In Vivo Pulmonary Toxicity Profiles, Toxicological Sciences, vol.97, issue.1, pp.163-80, 2007.
DOI : 10.1093/toxsci/kfm018

E. Rushton, J. Jiang, S. Leonard, S. Eberly, V. Castranova et al., Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics, Journal of Toxicology and Environmental Health, Part A, vol.94, issue.1, pp.445-61, 2010.
DOI : 10.1161/CIRCULATIONAHA.105.548743

URL : http://europepmc.org/articles/pmc3884809?pdf=render

Y. Kim, E. Boykin, T. Stevens, K. Lavrich, and M. Gilmour, Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches, Journal of Nanobiotechnology, vol.183, issue.1???3, p.47, 2014.
DOI : 10.1016/S0300-483X(02)00542-5

J. Teeguarden, V. Mikheev, K. Minard, W. Forsythe, W. Wang et al., Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes, Particle and Fibre Toxicology, vol.7, issue.Suppl 1, p.46, 2014.
DOI : 10.1021/nn402145t

URL : https://particleandfibretoxicology.biomedcentral.com/track/pdf/10.1186/s12989-014-0046-4

K. Donaldson, A. Schinwald, F. Murphy, W. Cho, R. Duffin et al., The Biologically Effective Dose in Inhalation Nanotoxicology, Accounts of Chemical Research, vol.46, issue.3, pp.723-755, 2013.
DOI : 10.1021/ar300092y

T. Loret, E. Peyret, M. Dubreuil, O. Aguerre-chariol, C. Bressot et al., Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions, Particle and Fibre Toxicology, vol.208, issue.3, p.58, 2016.
DOI : 10.1186/1743-8977-11-5

URL : https://hal.archives-ouvertes.fr/ineris-01863163

U. S. Epa, Air quality criteria for particulate matter, Final Report U.S. Environmental Protection Agency, vol.600, 2004.

O. Schmid and T. Stoeger, Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung, Journal of Aerosol Science, vol.99, pp.133-176, 2016.
DOI : 10.1016/j.jaerosci.2015.12.006

H. Braakhuis, F. Cassee, P. Fokkens, L. De-la-fonteyne, A. Oomen et al., Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study, Nanotoxicology, vol.10, issue.1, pp.63-73, 2016.

R. Duffin, L. Tran, D. Brown, V. Stone, and K. Donaldson, Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity, Inhalation Toxicology, vol.184, issue.3, pp.849-56, 2007.
DOI : 10.1080/009841098159169

K. Stone, R. Mercer, P. Gehr, B. Stockstill, and J. Crapo, Allometric Relationships of Cell Numbers and Size in the Mammalian Lung, American Journal of Respiratory Cell and Molecular Biology, vol.62, issue.2, pp.235-278, 1992.
DOI : 10.1016/0034-5687(80)90003-1

T. Ohashi, K. Pinkerton, M. Ikegami, and A. Jobe, Changes in Alveolar Surface Area, Surfactant Protein A, and Saturated Phosphatidylcholine with Postnatal Rat Lung Growth, Pediatric Research, vol.35, issue.6, pp.685-694, 1994.
DOI : 10.1203/00006450-199406000-00013

J. Crapo, B. Barry, P. Gehr, M. Bachofen, and E. Weibel, Cell number and cell characteristics of the normal human lung, Am Rev Respir Dis, vol.126, issue.2, pp.332-339, 1982.

O. , Guidance document on acute inhalation toxicity testing, Series on testing and assesment: number 39, 2009.

M. Geiser and W. Kreyling, Deposition and biokinetics of inhaled nanoparticles, Particle and Fibre Toxicology, vol.7, issue.1, 2010.
DOI : 10.1186/1743-8977-7-2

URL : https://particleandfibretoxicology.biomedcentral.com/track/pdf/10.1186/1743-8977-7-2

B. Lehnert, Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung, Environmental Health Perspectives, vol.97, pp.17-46, 1992.
DOI : 10.1289/ehp.929717

M. Mann-jong, L. Shih, and R. Wu, Pulmonary epithelium: cell types and functions The pulmonary epithelium in health and disease, 2008.

H. Fehrenbach, Alveolar epithelial type II cell: defender of the alveolus revisited, Respiratory Research, vol.2, issue.1, pp.33-52, 2001.
DOI : 10.1186/rr36

F. Blank, B. Rothen-rutishauser, S. Schurch, and P. Gehr, Model of the Respiratory Tract Wall to Study Particle Cell Interactions, Journal of Aerosol Medicine, vol.19, issue.3, pp.392-405, 2006.
DOI : 10.1089/jam.2006.19.392

E. Park, H. Jung, H. Yang, M. Yoo, C. Kim et al., Optimized THP-1 differentiation is required for the detection of responses to weak stimuli, Inflammation Research, vol.56, issue.1, pp.45-50, 2007.
DOI : 10.1007/s00011-007-6115-5

R. Wottrich, S. Diabate, and H. Krug, Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture, International Journal of Hygiene and Environmental Health, vol.207, issue.4, pp.353-61, 2004.
DOI : 10.1078/1438-4639-00300

D. Napierska, L. Thomassen, B. Vanaudenaerde, K. Luyts, D. Lison et al., Cytokine production by co-cultures exposed to monodisperse amorphous silica nanoparticles: The role of size and surface area, Toxicology Letters, vol.211, issue.2, pp.98-104, 2012.
DOI : 10.1016/j.toxlet.2012.03.002

B. Rothen-rutishauser, F. Blank, C. Muhlfeld, and P. Gehr, models of the human epithelial airway barrier to study the toxic potential of particulate matter, Expert Opinion on Drug Metabolism & Toxicology, vol.6, issue.8, pp.1075-89, 2008.
DOI : 10.1586/17476348.2.2.215

J. Kim, T. Peters, O. Shaughnessy, P. Adamcakova-dodd, A. Thorne et al., Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials, Toxicology in Vitro, vol.27, issue.1, pp.164-73, 2013.
DOI : 10.1016/j.tiv.2012.08.030

Y. Xie, N. Williams, A. Tolic, W. Chrisler, J. Teeguarden et al., Aerosolized ZnO Nanoparticles Induce Toxicity in Alveolar Type II Epithelial Cells at the Air-Liquid Interface, Toxicological Sciences, vol.20, issue.2, pp.450-61, 2012.
DOI : 10.1088/0957-4484/20/19/195103

URL : https://academic.oup.com/toxsci/article-pdf/125/2/450/16682840/kfr251.pdf

R. Landsiedel, U. Sauer, L. Ma-hock, J. Schnekenburger, and M. Wiemann, inhalation or instillation studies, Nanomedicine, vol.27, issue.6, pp.2557-85, 2014.
DOI : 10.1002/wnan.162

P. Hoet, B. Nemery, and D. Napierska, Intracellular oxidative stress caused by nanoparticles: What do we measure with the dichlorofluorescein assay?, Nano Today, vol.8, issue.3, pp.223-230, 2013.
DOI : 10.1016/j.nantod.2013.01.001

K. Driscoll, J. Carter, D. Hassenbein, and B. Howard, Cytokines and particle-induced inflammatory cell recruitment, Environmental Health Perspectives, vol.105, issue.Suppl 5, pp.1159-64, 1997.
DOI : 10.1289/ehp.97105s51159

G. Oberdorster, J. Finkelstein, C. Johnston, R. Gelein, C. Cox et al., Acute pulmonary effects of ultrafine particles in rats and mice, Res Rep Health Eff Inst, vol.96, pp.5-74, 2000.

W. Organization, Guidance document on evaluating and expressing uncertainty in hazard characterization, 2018.

A. Hardy, D. Benford, T. Halldorsson, M. Jeger, K. Knutsen et al., Update, Endeavour, vol.35, issue.2-3, p.4658, 2017.
DOI : 10.1016/j.endeavour.2011.05.001

W. Slob, Dose-Response Modeling of Continuous Endpoints, Toxicological Sciences, vol.66, issue.2, pp.298-312, 2002.
DOI : 10.1093/toxsci/66.2.298

URL : https://academic.oup.com/toxsci/article-pdf/66/2/298/10887949/12040200298.pdf

X. Jing, J. Park, T. Peters, and P. Thorne, Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air???liquid interface compared with in vivo assessment, Toxicology in Vitro, vol.29, issue.3, pp.502-513, 2015.
DOI : 10.1016/j.tiv.2014.12.023

A. Panas, C. Marquardt, O. Nalcaci, H. Bockhorn, W. Baumann et al., Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages, Nanotoxicology, vol.11, issue.2, pp.259-73, 2013.
DOI : 10.1073/pnas.1008155107

M. Wiemann, A. Vennemann, U. Sauer, K. Wiench, L. Ma-hock et al., An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials, Journal of Nanobiotechnology, vol.10, issue.Suppl 1, p.16, 2016.
DOI : 10.1186/s12951-016-0164-2

T. Stoeger, O. Schmid, S. Takenaka, and H. Schulz, Inflammatory Response to TiO2 and Carbonaceous Particles Scales Best with BET Surface Area, Environmental Health Perspectives, vol.115, issue.6, pp.290-291, 2007.
DOI : 10.1289/ehp.115-a290b

URL : http://europepmc.org/articles/pmc1892122?pdf=render

G. Oberdorster, E. Oberdorster, and J. Oberdorster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environmental Health Perspectives, vol.113, issue.7, pp.823-862, 2005.
DOI : 10.1289/ehp.7339

H. Braakhuis, C. Giannakou, W. Peijnenburg, J. Vermeulen, H. Van-loveren et al., models can predict pulmonary toxicity of silver nanoparticles, Nanotoxicology, vol.9, issue.6, pp.770-779, 2016.
DOI : 10.1007/s00216-011-5266-y

B. Fubini, M. Ghiazza, and I. Fenoglio, Physico-chemical features of engineered nanoparticles relevant to their toxicity, Nanotoxicology, vol.28, issue.5, pp.347-63, 2010.
DOI : 10.1080/01902140260426742

P. Demokritou, S. Gass, G. Pyrgiotakis, J. Cohen, W. Goldsmith et al., inhalation exposures, Nanotoxicology, vol.21, issue.2, pp.1338-50, 2013.
DOI : 10.1021/nn3010087

B. Baisch, N. Corson, P. Wade-mercer, R. Gelein, A. Kennell et al., Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation, Particle and Fibre Toxicology, vol.11, issue.1, 2014.
DOI : 10.1080/08958370490439597

B. Wong, Inhalation Exposure Systems: Design, Methods and Operation, Toxicologic Pathology, vol.31, issue.1, pp.3-14, 2007.
DOI : 10.3109/15376519609068453

URL : http://journals.sagepub.com/doi/pdf/10.1080/01926230601060017

S. Anjilvel and B. Asgharian, A Multiple-Path Model of Particle Deposition in the Rat Lung, Fundamental and Applied Toxicology, vol.28, issue.1, pp.41-50, 1995.
DOI : 10.1006/faat.1995.1144

J. Cohen, J. Teeguarden, and P. Demokritou, An integrated approach for the in vitro dosimetry of engineered nanomaterials, Particle and Fibre Toxicology, vol.11, issue.1, p.20, 2014.
DOI : 10.1038/nature06981

K. Pinkerton, B. Barry, J. Oneil, J. Raub, P. Pratt et al., Morphologic changes in the lung during the lifespan of Fischer 344 rats, American Journal of Anatomy, vol.118, issue.2, pp.155-74, 1982.
DOI : 10.1111/j.1365-2818.1980.tb00291.x

G. Massaro, J. Mortola, and D. Massaro, Sexual dimorphism in the architecture of the lung's gas-exchange region., Proceedings of the National Academy of Sciences, vol.92, issue.4, pp.1105-1112, 1995.
DOI : 10.1073/pnas.92.4.1105

F. Miller, DOSIMETRY OF PARTICLES IN LABORATORY ANIMALS AND HUMANS IN RELATIONSHIP TO ISSUES SURROUNDING LUNG OVERLOAD AND HUMAN HEALTH RISK ASSESSMENT: A Critical Review, Inhalation Toxicology, vol.12, issue.1, pp.19-57, 2000.
DOI : 10.1080/089583700196536

C. Singh, S. Friedrichs, G. Ceccone, N. Gibson, K. Jensen et al., Cerium dioxide, NM-211, NM-212, NM-213. Characterisation and test item preparation, JRC repository: NM-series of representative manufactured nanomaterials Ispra, Italy: European Commission Joint Research Centre Institute for health and consumer protection, 2014.

K. Rasmussen, J. Mast, D. Temmerman, P. Verleysen, E. Waegeneers et al., Titanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and physico-chemical properties. JRC science and policy reports, 2014.

P. Krystek, J. Tentschert, Y. Nia, B. Trouiller, L. Noel et al., Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry, Analytical and Bioanalytical Chemistry, vol.60, issue.16, pp.3853-61, 2014.
DOI : 10.1021/ja01269a023

URL : https://hal.archives-ouvertes.fr/ineris-01855499

P. Hinderliter, K. Minard, G. Orr, W. Chrisler, B. Thrall et al., ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies, Particle and Fibre Toxicology, vol.7, issue.1, p.36, 2010.
DOI : 10.1186/1743-8977-7-36

G. Deloid, J. Cohen, T. Darrah, R. Derk, L. Rojanasakul et al., Estimating the effective density of engineered nanomaterials for in vitro dosimetry, Nature Communications, vol.1, issue.1, p.3514, 2014.
DOI : 10.1021/ic2017648

I. Gosens, L. Mathijssen, B. Bokkers, H. Muijser, and F. Cassee, Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats, Nanotoxicology, vol.115, issue.5, pp.643-53, 2014.
DOI : 10.1289/ehp.9254

T. Stoeger, C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg et al., Instillation of Six Different Ultrafine Carbon Particles Indicates a Surface Area Threshold Dose for Acute Lung Inflammation in Mice, Environmental Health Perspectives, vol.114, issue.3, pp.328-361, 2006.
DOI : 10.1289/ehp.8266