E. Petavratzi, S. Kingman, and I. Lowndes, Particulates from mining operations: A review of sources, effects and regulations, Minerals Engineering, vol.18, issue.12, pp.1183-1199, 2005.
DOI : 10.1016/j.mineng.2005.06.017

D. Dahmann and C. Monz, Determination of dustiness of nanostructured materials, Gefahrstoffe -Reinhaltung der Luft, vol.71, pp.481-487, 2011.

I. Ogura, H. Sakurai, and M. Gamo, Dustiness testing of engineered nanomaterials, Journal of Physics: Conference Series, vol.170, p.12003, 2009.
DOI : 10.1088/1742-6596/170/1/012003

A. Klippel, M. Schmidt, and U. Krause, Dustiness in workplace safety and explosion protection ??? Review and outlook, Journal of Loss Prevention in the Process Industries, vol.34, pp.22-29, 2015.
DOI : 10.1016/j.jlp.2015.01.011

D. E. Evans, L. A. Turkevich, T. Roettgers, G. J. Deye, and P. A. Baron, Dustiness of Fine and Nanoscale Powders, pp.261-277, 2013.

A. Maynard, P. Baron, and M. Foley, Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single-Walled Carbon Nanotube Material, Journal of Toxicology and Environmental Health, Part A, vol.67, issue.1, 2004.
DOI : 10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N

A. D. Maynard and E. D. , Airborne Nanostructured Particles and Occupational Health, Journal of Nanoparticle Research, vol.53, issue.6, pp.587-614, 2005.
DOI : 10.1164/ajrccm/143.5_Pt_1.1134

O. L. Le-bihan, A. Ustache, D. Bernard, O. Aguerre-chariol, and M. Morgeneyer, Experimental Study of the Aerosolization from a Carbon Nanotube Bulk by a Vortex Shaker, Journal of Nanomaterials, vol.67, issue.1, p.2014, 2014.
DOI : 10.1007/s11051-010-0050-z

URL : https://hal.archives-ouvertes.fr/ineris-01862518

Y. Ding, B. Stahlmecke, H. Kaminski, Y. Jiang, T. A. Kuhlbusch et al., Deagglomeration testing of airborne nanoparticle agglomerates: Stability analysis under varied aerodynamic shear and relative humidity conditions, Aerosol Science and Technology, vol.124, issue.2, pp.1253-1263, 2016.
DOI : 10.1016/j.tox.2012.12.015

S. Kamath, V. Puri, H. Manbeck, and R. Hogg, Flow properties of powders using four testersmeasurement, comparison and assessment, Powder technology, pp.76-277, 1993.

W. A. Heitbrink, W. F. Todd, T. C. Cooper, and D. M. O-'brien, The Application of Dustiness Tests to the Prediction of Worker Dust Exposure, American Industrial Hygiene Association Journal, vol.51, issue.4, pp.51-217, 1990.
DOI : 10.1080/15298669091369565

S. Bach, U. Eickmann, and E. Schmidt, Comparison of established systems for measuring the dustiness of powders with the unc dustiness tester developed especially for pharmaceutical substances, Annals of occupational hygiene, p.22, 2013.

F. Hamelmann and E. Schmidt, Methods of Estimating the Dustiness of Industrial Powders ??? A Review, KONA Powder and Particle Journal, vol.21, issue.0, pp.7-18, 2003.
DOI : 10.14356/kona.2003006

M. A. Plinke, R. Maus, and D. Leith, EXPERIMENTAL EXAMINATION OF FACTORS THAT AFFECT DUST GENERATION BY USING HEUBACH AND MRI TESTERS, American Industrial Hygiene Association Journal, vol.53, issue.5, pp.325-330, 1992.
DOI : 10.1080/15298669291359726

C. En, 15051 workplace atmospheresmeasurement of the dustiness of bulk materialsrequirements and test methods, European committee for standardization, 2006.

M. Boundy, D. Leith, and T. Polton, Method to evaluate the dustiness of pharmaceutical powders, Annals of Occupational Hygiene, vol.50, pp.453-458, 2006.

M. Morgeneyer, O. Le-bihan, A. Ustache, and O. , Experimental study of the aerosolization of fine alumina particles from bulk by a vortex shaker, Powder Technology, vol.246, pp.583-589, 2013.
DOI : 10.1016/j.powtec.2013.05.040

URL : https://hal.archives-ouvertes.fr/ineris-00963502

S. Chakravarty, O. Le-bihan, M. Fischer, and M. Morgeneyer, Dust generation in powders: Effect of particle size distribution, EPJ Web of Conferences, p.13018
DOI : 10.1016/j.powtec.2013.10.051

URL : https://hal.archives-ouvertes.fr/ineris-01863198

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, Journal of Applied Mechanics, vol.44, issue.3, 1976.
DOI : 10.1115/1.3424128

R. J. Adrian and J. , Particle image velocimetry, 2011.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Experiments in Fluids, vol.25, issue.4, pp.316-319, 1998.
DOI : 10.1007/s003480050235

URL : http://microfluidics.stanford.edu/pubs/santiago1998-pivsystem.pdf

C. Willert, Stereoscopic digital particle image velocimetry for application in wind tunnel flows, Measurement Science and Technology, vol.8, issue.12, p.1465, 1997.
DOI : 10.1088/0957-0233/8/12/010

I. Nezu and W. Rodi, Open???channel Flow Measurements with a Laser Doppler Anemometer, Journal of Hydraulic Engineering, vol.112, issue.5, pp.335-355, 1986.
DOI : 10.1061/(ASCE)0733-9429(1986)112:5(335)

A. C. Manuscript,

A. P. Yoganathan, W. H. Corcoran, and E. C. Harrison, In vitro velocity measurements in the vicinity of aortic prostheses, Journal of Biomechanics, vol.12, issue.2, pp.135-152, 1979.
DOI : 10.1016/0021-9290(79)90153-2

A. Ochieng, M. Onyango, and K. Kiriamiti, Experimental measurement and computational fluid dynamics simulation of mixing in a stirred tank: a review, South African Journal of Science, vol.105, issue.11/12, pp.421-426, 2009.
DOI : 10.4102/sajs.v105i11/12.139

Z. Liu, C. Landreth, R. Adrian, and T. Hanratty, High resolution measurement of turbulent structure in a channel with particle image velocimetry, Experiments in Fluids, vol.2, issue.6, pp.301-312, 1991.
DOI : 10.1007/BF00266315

R. Ettema, I. Fujita, M. Muste, and A. Kruger, Particle-image velocimetry for whole-field measurement of ice velocities, Cold Regions Science and Technology, vol.26, issue.2, pp.97-112, 1997.
DOI : 10.1016/S0165-232X(97)00011-6

B. Guo, D. F. Fletcher, and T. A. Langrish, Simulation of the agglomeration in a spray using Lagrangian particle tracking, Applied Mathematical Modelling, vol.28, issue.3, pp.273-290, 2004.
DOI : 10.1016/S0307-904X(03)00133-1

P. W. Longest and J. Xi, Effectiveness of Direct Lagrangian Tracking Models for Simulating Nanoparticle Deposition in the Upper Airways, Aerosol Science and Technology, vol.32, issue.3, pp.380-397, 2007.
DOI : 10.1016/S0021-8502(01)00170-7

J. Seville, A Single Particle View Of Fluidization, The 13th International Conference on Fluidization -New Paradigm in Fluidization Engineering, pp.1-11, 2010.

J. Chaouki, F. Larachi, and M. Dudukovic, Non-invasive monitoring of multiphase flows, 1997.

J. A. Laverman, I. Roghair, M. V. Annaland, and H. Kuipers, Investigation into the hydrodynamics of gas???solid fluidized beds using particle image velocimetry coupled with digital image analysis, The Canadian Journal of Chemical Engineering, vol.8, issue.3, pp.523-535, 2008.
DOI : 10.1002/cjce.20054

R. Ansart, P. Garcia-trinanes, B. Boissiere, H. Benoit, J. Seville et al., Dense gas-particle suspension upward flow used as heat transfer fluid in solar receiver: PEPT experiments and 3D numerical simulations, Powder Technology, vol.307, pp.126-137, 2017.
DOI : 10.1016/j.powtec.2016.11.006

URL : https://hal.archives-ouvertes.fr/hal-01451402

D. Parker, A. Dijkstra, I. Martin, and J. P. Seville, Positron emission particle tracking studies of spherical particle motion in rotating drums, Chemical Engineering Science, vol.52, issue.13, pp.2011-2022, 1997.
DOI : 10.1016/S0009-2509(97)00030-4

T. Volkwyn, A. Buffler, I. Govender, J. Franzidis, A. Morrison et al., Studies of the effect of tracer activity on time-averaged positron emission particle tracking measurements on tumbling mills at PEPT Cape Town, Minerals Engineering, vol.24, issue.3-4, pp.24-261, 2011.
DOI : 10.1016/j.mineng.2010.08.020

M. Stein, Y. Ding, and J. Seville, Experimental verification of the scaling relationships for bubbling gas-fluidised beds using the PEPT technique, Chemical Engineering Science, vol.57, issue.17, pp.3649-3658, 2002.
DOI : 10.1016/S0009-2509(02)00264-6

D. J. Parker, C. J. Broadbent, P. Fowles, and M. R. Hawkesworth, Positron emission particle tracking-a technique for studying flow within engineering equipment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.326-592, 1993.

M. Tan, D. Parker, and P. Dee, Pept data presentation software, manual, 1997.

J. Seville, A. Ingram, X. Fan, and D. Parker, Chapter 4 Positron Emission Imaging in Chemical Engineering, Advances in Chemical Engineering, vol.37, pp.149-178, 2009.
DOI : 10.1016/S0065-2377(09)03704-1

D. Valdesueiro, P. Garcia-triñanes, G. Meesters, M. Kreutzer, J. Gargiuli et al., Enhancing the activation of silicon carbide tracer particles for pept applications using gasphase deposition of alumina at room temperature and atmospheric pressure, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.108-113, 2016.

D. Parker, R. Forster, P. Fowles, and P. Takhar, Positron emission particle tracking using the new birmingham positron camera, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.477-540, 2002.

M. Van-de-velden, J. Baeyens, J. P. Seville, and X. Fan, The solids flow in the riser of a Circulating Fluidised Bed (CFB) viewed by Positron Emission Particle Tracking (PEPT), Powder Technology, vol.183, issue.2, pp.290-296, 2008.
DOI : 10.1016/j.powtec.2007.07.027

M. Marigo, M. Davies, T. Leadbeater, D. L. Cairns, A. Ingram et al., Application of Positron Emission Particle Tracking (PEPT) to validate a Discrete Element Method (DEM) model of granular flow and mixing in the Turbula mixer, International Journal of Pharmaceutics, vol.446, issue.1-2, pp.446-492, 2013.
DOI : 10.1016/j.ijpharm.2013.01.030

D. J. Parker and X. Fan, Positron emission particle tracking???Application and labelling techniques, Particuology, vol.6, issue.1, pp.16-23, 2008.
DOI : 10.1016/j.cpart.2007.10.004

D. Parker and P. Mcneil, Positron emission tomography for process applications, Measurement Science and Technology, vol.7, issue.3, 1996.
DOI : 10.1088/0957-0233/7/3/009

A. C. Manuscript,

H. Shi, R. Mohanty, S. Chakravarty, R. Cabiscol, M. Morgeneyer et al., Effect of particle size and cohesion on powders yielding and flow, KONA Powder and particle journal, 2017.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ): The Art of Scientific Computing, Numerical Recipes in C, 1992.

I. Tomasetta, D. Barletta, and M. Poletto, Correlation of powder flow properties to interparticle interactions at ambient and high temperatures, Particuology, vol.12, pp.90-99, 2014.
DOI : 10.1016/j.partic.2013.02.002

L. E. Stone, P. W. Wypych, D. B. Hastie, and S. Zigan, Cfd-dem modelling of powder flows and dust generation mechanisms-a review, 12th International Conference on Bulk Materials Storage, Handling and Transportation The, Engineers Australia, p.417, 2016.

S. Wangchai, D. B. Hastie, and P. W. Wypych, The investigation of particle flow mechanisms of bulk materials in dustiness testers, Particulate Science and Technology, vol.19, issue.2, pp.241-254, 2016.
DOI : 10.1016/j.powtec.2008.04.081

H. S. Kahrizsangi, D. Sofia, D. Barletta, and M. Poletto, Dust generation in vibrated cohesive powders, pp.43-769, 2015.

D. Barletta, P. Russo, and M. Poletto, Dynamic response of a vibrated fluidized bed of fine and cohesive powders, Powder Technology, vol.237, pp.276-285, 2013.
DOI : 10.1016/j.powtec.2012.12.004