M. J. Rosen and J. T. Kunjappu, Surfactants and Interfacial Phenomena, 2012.

V. Dembitsky, Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols, Lipids, vol.82, issue.10, pp.39-933, 2004.
DOI : 10.1055/s-0029-1243117

D. Myers, Surfactant Science and Technology, 2006.
DOI : 10.1002/047174607X

C. Eby and . Tatum, Chemistry of Soap, Detergents, & Cosmetics. United States: Flinn Scientific, Incorporated, 1989.

M. C. Fuerstenau, J. D. Miller, and M. C. Kuhn, Chemistry of Flotation, Society of Mining Engineers, 1985.

C. Muller, A. G. Maldonado, A. Varnek, and B. Creton, Prediction of Optimal Salinities for Surfactant Formulations Using a Quantitative Structure???Property Relationships Approach, Energy & Fuels, vol.29, issue.7, pp.29-4281, 2015.
DOI : 10.1021/acs.energyfuels.5b00825

M. N. Jones, Surfactants in membrane solubilisation, International Journal of Pharmaceutics, vol.177, issue.2, pp.177-137, 1999.
DOI : 10.1016/S0378-5173(98)00345-7

E. P. Carpenter, K. Beis, A. D. Cameron, and S. Iwata, Overcoming the challenges of membrane protein crystallography, Current Opinion in Structural Biology, vol.18, issue.5, pp.18-581, 2008.
DOI : 10.1016/j.sbi.2008.07.001

C. C. Ruiz, K. Sugar-based-surfactants-shinoda, T. Yamanaka, K. Kinoshita, P. Liljekvist et al., ?-Octyl Glyceryl Ether and Octyl Glucoside The surface pressure effect of pentaoxyethylene and maltoside surfactant head groups Synthesis of sucrose-based surfactants through regioselective sulfonation of acylsucrose and the nucleophilic opening of a sucrose cyclic sulfate (13) Kjellin, M.; Johansson, I., Surfactants from Renewable Resources. 1 ed Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides (15) Hill, K.; LeHen-Ferrenbach, C., 1. Sugar-Based Surfactants for Consumer Products and Technical Applications, in Sugar-Based Surfactants: Fundamentals and Interfacial Properties of Sugar-Based Surfactants Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers Micellar solubilization of drugs Structure-Performance Relationships in Surfactants, Surface Chemical Properties in Aqueous Solutions of Non-ionic Surfactants Octyl Glycol Ether Biobased Surfactants and Detergents: Synthesis, Properties, and Applications, of the European Parliament and of the Council. European Parliament: Brussels20) Guidance on Information Requirements and Chemical Safety Assessment7a:Endpoint Specific Guidance, Version 3. 2014, European Chemicals Agency (ECHA): Brussels. (21) Lu Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations. Colloids and Surfaces B: Biointerfaces, pp.648-659, 1907.

P. Mukerjee, K. J. Mysels, P. L. Du-noüy, G. Fayet, and P. Rotureau, Critical Micelle Concentrations of Aqueous Surfactant Systems An interfacial tensiometer for universal use How to use QSPR-type approaches to predict properties in the context of Green Chemistry26) Creton, B., Prediction of Surfactants' Properties using Multiscale Molecular Modeling Tools: A Review, J. Gen. Physiol. Biofuels, Bioprod. Biorefin. Oil Gas Sci. Technol. Rev. IFPEN J.-C, vol.27, issue.24 1, 1925.

P. Ungerer, B. Rousseau, C. Adamo, B. C. Stephenson, H. B. Klevens et al., Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations Structure and aggregation in dilate solution of surface active agents Prediction of Critical Micelle Concentration Using a Quantitative Structure?Property Relationship Approach. 1. Nonionic Surfactants A Review on Progress in QSPR Studies for Surfactants Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction REACH and in silico methods: an attractive opportunity for medicinal chemists Chemoinformatics: A Textbook QSPR Study of Critical Micelle Concentrations of Nonionic Surfactants Spectral Moments of the Edge Adjacency Matrix in Molecular Graphs. 1. Definition and Applications to the Prediction of Physical Properties of Alkanes Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids: How Accurately Can We Predict Melting Points? Correlation and prediction of critical micelle concentration using polar surface area and LFER methods, Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes Neural Networks in Chemistry41) Varnek, A., Fragment Descriptors in Structure?Property Modeling and Virtual Screening Chemoinformatics and Computational Chemical Biology Abbasi, A., Application of Wavelet Neural Networks in Multivariate Data Analysis Progress in Chemometrics Research, A.L. Pomerantsev, Editor. 2005. (44) Mozrzymas, A.; Rózycka-Roszak, B., Prediction of critical micelle concentration of nonionic surfactants by a quantitative structure -property relationship QSPR with extended topochemical atom (ETA) indices: Modeling of critical micelle concentration of non-ionic surfactants, pp.13093-74, 1757.

M. Mattei, G. M. Kontogeorgis, and R. Gani, Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method, Industrial & Engineering Chemistry Research, vol.52, issue.34, pp.52-12236, 2013.
DOI : 10.1021/ie4016232

N. Anoune, M. Nouiri, Y. Berrah, J. Gauvrit, and P. Lanteri, Critical micelle concentrations of different classes of surfactants: A quantitative structure property relationship study, Journal of Surfactants and Detergents, vol.2, issue.1, p.45, 2002.
DOI : 10.1007/s11743-002-0204-2

T. Gaudin, H. Lu, E. Van-hecke, A. Drelich, T. T. Dao et al.,

A. Wadouachi, G. Pourceau, G. Fayet, and I. Pezron, Data analysis on sugar-based surfactants: Towards structure-property relationships. in 10th World Surfactant Congress and Business Convention (CESIO). 2015. Haliç Congress Center Effect of Temperature Changes on Critical Micelle Concentration for Tween Series Surfactant, GJSFR: Chem, issue.1, p.13, 2013.

Y. Moroi, L. Wilk, K. A. Soko?owski, A. Burczyk, B. et al., Relationship between solubility and micellization of surfactants: The temperature range of micellization Synthesis and surface properties of Nalkylaldonamides, Steinkopff. p. 55. (51) Syper Trends in Colloid and Interface Science XII, 1988.

G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, and X. Li,

H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, and J. Sonnenberg,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima et al.,

T. Vreven, J. A. Montgomery, J. E. Peralta, and F. Ogliaro, Bearpark, M.; Heyd, J.J

K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, and K. Raghavachari, J.B

V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann et al.,

R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma et al.,

P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, J. B. Farkas-;-foresman et al., J.V

J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, 2009.

M. P. Savelli, P. Van-roekeghem, O. Douillet, G. Cavé, P. Godé et al., Effects of tail alkyl chain length (n), head group structure and junction (Z) on amphiphilic properties of 1-Z- R-d,l-xylitol compounds (R=CnH2n+1). Int Surface Activities, Foam Suppression, Biodegradability and Antimicrobial Properties of s-Alkyl Glucopyranosides, Studies of N-Dodecyllactobionamide, Maltose 6'-O-Dodecanoate, and Octyl-?-glucoside with Surface Tension, Surface Force, and Wetting Techniques, pp.221-54, 1941.

C. Boyère, G. Broze, C. Blecker, C. Jérôme, and A. Debuigne, Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions, Carbohydrate Research, vol.380, pp.29-57, 2013.
DOI : 10.1016/j.carres.2013.07.003

H. Chermette, P. Geerlings, F. De-proft, and W. Langenaeker, Chemical reactivity indexes in density functional theory, 60) Mulliken, R.S., Electronic Population Analysis on LCAO?MO Molecular Wave Functions. I. J, pp.129-59, 1999.
DOI : 10.1103/PhysRevB.56.16029

URL : https://hal.archives-ouvertes.fr/hal-00006867

A. E. Reed, R. B. Weinstock, F. Weinhold, and P. D. Huibers, Natural population analysis Quantum-Chemical Calculations of the Charge Distribution in Ionic Surfactants, Chem. Phys. J. Chem. Phys. Langmuir, vol.83, issue.62, pp.735-750, 1833.

L. C. Yee, Y. C. Wei, . Qsar, M. Qspr, K. Dehmer et al., Current Modeling Methods Used in QSAR/QSPR, in Statistical Modelling of Molecular Descriptors in QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors, Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms, p.805, 2010.

, J. Mol. Model, vol.17, p.2443, 2010.

O. Nicolotti, A. Carotti, A. Tropsha, P. Gramatica, V. K. Gombar et al., y-Randomization and Its Variants in QSPR/QSAR QSAR and QSPR Studies of a Highly Structured Physicochemical Domain The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models External Validation, Prediction employing the predictive squared correlation coefficient -test set activity mean vs. training set activity mean, 66) OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships, pp.47-2345, 2003.

V. Consonni, D. Ballabio, and R. Todeschini, Comments on the Definition of the Q2 Parameter for QSAR Validation, J. Chem. Inf. Model, pp.49-1669, 2009.

I. K. Lawrence, A Concordance Correlation Coefficient to Evaluate Reproducibility, Biometrics, pp.45-255, 1989.

I. K. Lawrence, K. Roy, I. Mitra, S. Kar, P. K. Ojha et al., Assay Validation Using the Concordance Correlation Coefficient Comparative Studies on Some Metrics for External Validation of QSPR Models, 75) Chirico, N.; Gramatica, P., Real External Predictivity of QSAR models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection, pp.599-74, 1992.

J. Jaworska, N. Nina, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set descriptor space: a review, J. Chem. Inf. Model. Altern. Lab. Anim, issue.76, pp.33-445, 2005.

A. Gissi, D. Galadeta, M. Floris, S. Olla, A. Carotti et al., An Alternative QSAR-Based Approach for Predicting the Bioconcentration Factor for Regulatory Purposes, Scheme for the Calculation of the Electronegativities of Atoms in a Molecule in the Framework of Sanderson's Principle. Dokl, pp.31-54, 2014.

. Akad, . Nauk, C. Sssr-tanford, R. E. Marchant, E. H. Anderson et al., Interfacial free energy and the hydrophobic effect Polysaccharide Surfactants: Structure, Synthesis, and Surface-Active Properties, in Polysaccharides, Structural Diversity and Functional Versatility Conformations of n-alkyl-?/?-D-glucopyranoside surfactants: impact on molecular properties Submitted to Comp, Johansson, I., Four Different C8G1Alkylglucosides. Anomeric Effects and the Influence of Straight vs Branched Hydrocarbon Chains, pp.883-4175, 1979.

M. L. Antonelli, M. G. Bonicelli, G. Ceccaroni, C. Mesa, B. Sesta et al., Solution properties of octyl-??-D-glucoside. Part 2: Thermodynamics of micelle formation, Colloid and Polymer Science, vol.115, issue.6, pp.704-1029, 1165.
DOI : 10.1007/BF00659284

M. Okawauchi, M. Hagio, Y. Ikawa, G. Sugihara, Y. Murata et al., Alkanoyl-N-methylglucamines in Aqueous Solution Volumetric Behavior of Micellization of Acyl-N-methylglucamide Surfactants in Water Comparative Surface Activities of Di-and Trisaccharide Fatty Acid Esters Characterization of micelles formed by sucrose 6-O-monoesters Non-ionic sugarbased surfactants: Self assembly and air/water interfacial activity Synthesis and amphiphilic properties of S-alkylthiopentonolactones and their pentitol derivatives An Efficient Acylation of Free Glycosylamines for the Synthesis of N-Glycosyl Amino Acids and N-Glycosidic Surfactants for Membrane Studies Headgroup effects on phase behavior and interfacial properties of ?- 3,7-dimethyloctylglycoside/water systems Synthesis and Surface Properties of, Bull. Chem. Soc. Jpn. Langmuir Langmuir Colloids Surf., A Colloids Surf., A J. Colloid Interface Sci. J. Carbohyd. Chem. Chem. Phys. Lipids Langmuir, vol.10, issue.1395, pp.4073-88, 1987.

N. Alkyl-n-methylgluconamides, Y. Zhu, M. J. Rosen, P. K. Vinson, and S. W. Morrall, Surface Properties of N-Alkanoyl-Nmethyl Glucamines and Related Materials, J. Colloid Interface Sci. J. Surfact. Deterg, vol.240, issue.2, pp.552-96, 1999.

R. Aveyard, B. P. Binks, J. Chen, J. Esquena, P. D. Fletcher et al., Surface Pressure Effect of Poly(ethylene oxide) and Sugar Headgroups in Liquid-Expanded Monolayers Structures of micelles formed by synthetic alkyl glycosides with unsaturated alkyl chains Novel Polysaccharide Surfactants: The Effect of Hydrophobic and Hydrophilic Chain Length on Surface Active Properties Preparation and properties of new lactose-based surfactants Effects of Temperature, Salt, and Deuterium Oxide on the Self-Aggregation of Alkylglycosides in Dilute Solution. 1. n-Nonyl-?-d-glucoside, Micelle Formation, and Growth of n-Octyl-?-d-Thioglucopyranoside in Aqueous Solutions at Different Temperatures, pp.4699-98, 1401.