, As proof of concept, HELIX will be able to evaluate the many challenges in the implementation of the exposome concept and will form an important first step toward the description of the life-course exposome and its health effects RefeRences Achenbach TM Manual for the ASEBA Preschool Forms and Profiles, 2000.

R. Barouki, P. Gluckman, P. Grandjean, M. Hanson, and J. Heindel, Developmental origins of non-communicable disease: Implications for research and public health, Environmental Health, vol.127, issue.3, pp.10-1186, 2012.
DOI : 10.1016/j.jsbmb.2011.08.007

URL : https://hal.archives-ouvertes.fr/inserm-00712586

S. Bartell, W. Griffith, and E. Faustman, Temporal error in biomarker-based mean exposure estimates for individuals, Journal of Exposure Science & Environmental Epidemiology, vol.10, issue.2, 2004.
DOI : 10.1038/sj.jea.7500110

, J Expo Anal Environ Epidemiol, vol.14, pp.173-179

R. Beaudouin, S. Micallef, and C. Brochot, A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan, Regulatory Toxicology and Pharmacology, vol.57, issue.1, pp.103-116, 2010.
DOI : 10.1016/j.yrtph.2010.01.005

URL : https://hal.archives-ouvertes.fr/ineris-00963225

R. Beelen, G. Hoek, D. Vienneau, M. Eeftens, K. Dimakopoulou et al., Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe ??? The ESCAPE project, Atmospheric Environment, vol.72, pp.10-23, 2013.
DOI : 10.1016/j.atmosenv.2013.02.037

D. Bellinger, Prenatal Exposures to Environmental Chemicals and Children???s Neurodevelopment: An Update, Safety and Health at Work, vol.4, issue.1, pp.1-11, 2013.
DOI : 10.5491/SHAW.2013.4.1.1

URL : https://doi.org/10.5491/shaw.2013.4.1.1

V. Bollati and A. Baccarelli, Environmental epigenetics, Heredity, vol.137, issue.1, pp.105-112, 2010.
DOI : 10.1016/j.ydbio.2006.08.006

J. Bousquet, J. Anto, C. Auffray, M. Akdis, A. Cambon-thomsen et al., MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine, Allergy, vol.126, issue.Suppl. 1, pp.596-604, 2011.
DOI : 10.1016/j.jaci.2010.07.019

URL : https://hal.archives-ouvertes.fr/hal-00595853

A. Bradman, K. Kogut, E. Eisen, N. Jewell, L. Quiros-alcala et al., Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week, Environ Health Perspect, vol.121, pp.118-124, 2013.

J. Braun, A. Kalkbrenner, A. Calafat, J. Bernert, X. Ye et al., Variability and Predictors of Urinary Bisphenol A Concentrations ???during Pregnancy, Environmental Health Perspectives, vol.119, issue.1, pp.131-13710, 2011.
DOI : 10.1289/ehp.1002366

B. Louis, G. Sundaram, and R. , Exposome: time for transformative research, Statistics in Medicine, vol.174, issue.3, pp.2569-2575, 2012.
DOI : 10.1093/aje/kwr193

E. Budtz-jørgensen, F. Debes, P. Weihe, and P. Grandjean, Structural equation models for meta-analysis in environmental risk assessment, Environmetrics, vol.48, issue.5, pp.510-527, 2010.
DOI : 10.1002/9781119013563

R. Cavill, A. Kamburov, J. Ellis, T. Athersuch, M. Blagrove et al., Consensus-Phenotype Integration of Transcriptomic and Metabolomic Data Implies a Role for Metabolism in the Chemosensitivity of Tumour Cells, PLoS Computational Biology, vol.36, issue.3, 2011.
DOI : 10.1371/journal.pcbi.1001113.s004

M. Chadeau-hyam, T. Athersuch, H. Keun, D. Iorio, M. Ebbels et al., Meeting-in-the-middle using metabolic profiling ??? a strategy for the identification of intermediate biomarkers in cohort studies, Biomarkers, vol.92, issue.1, pp.83-88, 2011.
DOI : 10.1093/nar/gkl923

L. Chatzi, E. Plana, V. Daraki, P. Karakosta, D. Alegkakis et al., Metabolic Syndrome in Early Pregnancy and Risk of Preterm Birth, American Journal of Epidemiology, vol.115, issue.11, pp.829-836, 2009.
DOI : 10.1111/j.1471-0528.2008.01870.x

H. Clewell, Y. Tan, J. Campbell, and M. Andersen, Quantitative Interpretation of Human Biomonitoring Data, Toxicology and Applied Pharmacology, vol.231, issue.1, pp.122-133, 2008.
DOI : 10.1016/j.taap.2008.04.021

C. Hubal, E. Richard, A. Aylward, L. Edwards, S. Gallagher et al., Advancing exposure characterization for chemical evaluation and risk assessment, 2010.

, J Toxicol Environ Health B Crit Rev, vol.13, issue.24, pp.299-313

C. Conners, Conners' Rating Scales?Revised Technical Manual, 1997.
DOI : 10.1037/t04967-000

P. Dadvand, J. Sunyer, X. Basagaña, F. Ballester, A. Lertxundi et al., Surrounding Greenness and Pregnancy Outcomes in Four Spanish Birth Cohorts, Environmental Health Perspectives, vol.120, issue.10, pp.1481-1487, 2012.
DOI : 10.1289/ehp.1205244

URL : https://ehp.niehs.nih.gov/doi/pdf/10.1289/ehp.1205244

A. De-nazelle, E. Seto, D. Donaire-gonzalez, M. Mendez, J. Matamala et al., Improving estimates of air pollution exposure through ubiquitous sensing technologies, Environmental Pollution, vol.176, pp.92-99, 2013.
DOI : 10.1016/j.envpol.2012.12.032

P. Drouillet, M. Kaminski, D. Lauzon-guillain, B. Forhan, A. Ducimetière et al., Association between maternal seafood consumption before pregnancy and fetal growth: evidence for an association in overweight women. The EDEN mother-child cohort, Paediatric and Perinatal Epidemiology, vol.35, issue.A, pp.76-86, 2009.
DOI : 10.1016/S0368-2315(06)76409-2

URL : https://hal.archives-ouvertes.fr/inserm-00318497

M. Eeftens, M. Tsai, C. Ampe, B. Anwander, R. Beelen et al., Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 ??? Results of the ESCAPE project, Atmospheric Environment, vol.62, issue.0, pp.303-317, 2012.
DOI : 10.1016/j.atmosenv.2012.08.038

J. Ellis, T. Athersuch, L. Thomas, F. Teichert, M. Perez-trujillo et al., Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population, BMC Medicine, vol.193, issue.Suppl 1, pp.61-71, 2012.
DOI : 10.1016/0003-2697(91)90011-H

J. Gallagher, E. Hudgens, A. Williams, J. Inmon, S. Rhoney et al., Mechanistic Indicators of Childhood Asthma (MICA) Study: piloting an integrative design for evaluating environmental health, BMC Public Health, vol.162, issue.16, pp.10-1186, 2011.
DOI : 10.1001/archinte.162.16.1867

M. Gascon, E. Morales, J. Sunyer, and M. Vrijheid, Effects of persistent organic pollutants on the developing respiratory and immune systems: A systematic review, Environment International, vol.52, pp.51-65, 2013.
DOI : 10.1016/j.envint.2012.11.005

M. Gascon, M. Verner, M. Guxens, J. Grimalt, J. Forns et al., Evaluating the neurotoxic effects of lactational exposure to persistent organic pollutants (POPs) in Spanish children, NeuroToxicology, vol.34, pp.9-15, 2013.
DOI : 10.1016/j.neuro.2012.10.006

P. Gluckman and M. Hanson, Living with the Past: Evolution, Development, and Patterns of Disease, Science, vol.305, issue.5691, pp.1733-1736, 2004.
DOI : 10.1126/science.1095292

R. Grazuleviciene, A. Danileviciute, R. Nadisauskiene, and J. Vencloviene, Maternal Smoking,GSTM1 and GSTT1 Polymorphism and Susceptibility to Adverse Pregnancy Outcomes, International Journal of Environmental Research and Public Health, vol.1, issue.3, pp.1282-1297, 2009.
DOI : 10.1186/1755-7682-1-8

K. Gruden, M. Hren, A. Herman, A. Blejec, T. Albrecht et al., A ???Crossomics??? Study Analysing Variability of Different Components in Peripheral Blood of Healthy Caucasoid Individuals, PLoS ONE, vol.7, issue.1, 2012.
DOI : 10.1371/journal.pone.0028761.s003

M. Guxens, F. Ballester, M. Espada, M. Fernández, J. Grimalt et al., Cohort profile: the INMA?INfancia y Medio Ambiente?(Environment and Childhood) Project, 2012.

, Int J Epidemiol, vol.41, issue.4, pp.930-940

D. Hebels, P. Georgiadis, H. Keun, T. Athersuch, P. Vineis et al., Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research, Environmental Health Perspectives, vol.121, pp.480-487, 2013.
DOI : 10.1289/ehp.1205657

R. Hines, D. Sargent, H. Autrup, L. Birnbaum, R. Brent et al., Approaches for Assessing Risks to Sensitive Populations: Lessons Learned from Evaluating Risks in the Pediatric Population, Toxicological Sciences, vol.34, issue.103, pp.4-26, 2010.
DOI : 10.1124/dmd.106.011387

L. Hou, D. Wang, and A. Baccarelli, Environmental chemicals and microRNAs, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.714, issue.1-2, pp.105-112, 2011.
DOI : 10.1016/j.mrfmmm.2011.05.004

L. Hou, X. Zhang, D. Wang, and A. Baccarelli, Environmental chemical exposures and human epigenetics, International Journal of Epidemiology, vol.41, issue.1, pp.79-105, 2012.
DOI : 10.1161/01.RES.0000257913.42552.23

D. Jennen, A. Ruiz-aracama, C. Magkoufopoulou, A. Peijnenburg, A. Lommen et al., Integrating transcriptomics and metabonomics to unravel modes-of-action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells, BMC Systems Biology, vol.5, issue.1, pp.13910-1186, 2011.
DOI : 10.1021/ac900036d

A. Kamburov, R. Cavill, T. Ebbels, R. Herwig, and H. Keun, Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA, Bioinformatics, vol.38, issue.20, pp.2917-2918, 2011.
DOI : 10.1093/nar/gkq329

J. Kawahara, S. Tanaka, C. Tanaka, Y. Aoki, and J. Yonemoto, Estimation of daily inhalation rate in preschool children using a tri-axial accelerometer: A pilot study, Science of The Total Environment, vol.409, issue.16, pp.3073-3077, 2011.
DOI : 10.1016/j.scitotenv.2011.04.006

L. Merrill, M. Birnbaum, and L. , Childhood Obesity and Environmental Chemicals, Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, vol.76, issue.3, pp.22-48, 2011.
DOI : 10.1002/jnr.20050

P. Larsen, M. Kamper-jørgensen, A. Adamson, H. Barros, J. Bonde et al., Pregnancy and Birth Cohort Resources in Europe: a Large Opportunity for Aetiological Child Health Research, Paediatric and Perinatal Epidemiology, vol.19, issue.Suppl 15, pp.393-414, 2013.
DOI : 10.1023/B:EJEP.0000040530.98310.0c

M. Lezak and . Assessment, , 2004.

P. Lioy and S. Rappaport, Exposure Science and the Exposome: An Opportunity for Coherence in the Environmental Health Sciences, Environmental Health Perspectives, vol.119, issue.11, pp.466-467, 2011.
DOI : 10.1289/ehp.1104387

P. Liu and J. Hwang, Quick calculation for sample size while controlling false discovery rate with application to microarray analysis, Bioinformatics, vol.19, issue.6, pp.739-746, 2007.
DOI : 10.1093/bioinformatics/btg345

URL : https://academic.oup.com/bioinformatics/article-pdf/23/6/739/16860959/btl664.pdf

M. Lyons, R. Yang, A. Mayeno, and B. Reisfeld, Computational Toxicology of Chloroform: Reverse Dosimetry Using Bayesian Inference, Markov Chain Monte Carlo Simulation, and Human Biomonitoring Data, Environmental Health Perspectives, vol.116, issue.8, pp.1040-1046, 2008.
DOI : 10.1289/ehp.11079

P. Magnus, L. Irgens, K. Haug, W. Nystad, R. Skjaerven et al., Cohort profile: The Norwegian Mother and Child Cohort Study (MoBa), International Journal of Epidemiology, vol.35, issue.5, pp.1146-1150, 2006.
DOI : 10.1093/ije/dyl170

J. Molitor, M. Papathomas, M. Jerrett, and S. Richardson, Bayesian profile regression with an application to the National survey of children's health, Biostatistics, vol.5, issue.2, pp.484-498, 2010.
DOI : 10.1023/A:1023286210205

R. National and . Council, Exposure Science in the 21st Century: A Vision and Strategy, 2012.

M. Nieuwenhuijsen, R. Smith, S. Golfinopoulos, N. Best, J. Bennett et al., Health impacts of long-term exposure to disinfection by-products in drinking water in Europe: HIWATE, Journal of Water and Health, vol.7, issue.2, pp.185-207, 2009.
DOI : 10.2166/wh.2009.073

URL : https://hal.archives-ouvertes.fr/inserm-00505430

M. Papathomas, J. Molitor, S. Richardson, E. Riboli, and P. Vineis, Examining the Joint Effect of Multiple Risk Factors Using Exposure Risk Profiles: Lung Cancer in Nonsmokers, Environmental Health Perspectives, vol.119, issue.1, pp.84-91, 2011.
DOI : 10.1289/ehp.1002118

C. Patel, J. Bhattacharya, and A. Butte, An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus, PLoS ONE, vol.2, issue.5, 2010.
DOI : 10.1371/journal.pone.0010746.s010

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0010746&type=printable

C. Patel, R. Chen, K. Kodama, J. Ioannidis, and A. Butte, Systematic identification of interaction effects between genome- and environment-wide associations in type 2 diabetes mellitus, Human Genetics, vol.414, issue.5, pp.495-508, 2013.
DOI : 10.1038/414782a

C. Philippat, M. Wolff, A. Calafat, X. Ye, R. Bausell et al., Prenatal Exposure to Environmental Phenols: Concentrations in Amniotic Fluid and Variability in Urinary Concentrations during Pregnancy, Environmental Health Perspectives, vol.121, pp.1225-1231, 2013.
DOI : 10.1289/ehp.1206335

URL : http://europepmc.org/articles/pmc3801458?pdf=render

J. Preau, . Jr, L. Wong, M. Silva, L. Needham et al., Variability over 1 Week in the Urinary Concentrations of Metabolites of Diethyl Phthalate and Di(2-Ethylhexyl) Phthalate among Eight Adults: An Observational Study, Environmental Health Perspectives, vol.118, issue.12, pp.1748-1754, 2010.
DOI : 10.1289/ehp.1002231

S. Rappaport, Implications of the exposome for exposure science, Journal of Exposure Science & Environmental Epidemiology, vol.10, issue.1, pp.5-9, 2011.
DOI : 10.1126/science.1071055

S. Rappaport and M. Smith, Environment and Disease Risks, Science, vol.300, issue.5617, pp.460-461, 2010.
DOI : 10.1126/science.1084564

URL : http://europepmc.org/articles/pmc4841276?pdf=render

J. Raven, R. J. Court, and J. , Raven's Progressive Matrices und Vocabulary Scales, 1998.

D. Rojas-rueda, A. De-nazelle, O. Teixido, and M. Nieuwenhuijsen, Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study, Environment International, vol.49, pp.100-109, 2012.
DOI : 10.1016/j.envint.2012.08.009

M. Rueda, J. Fan, B. Mccandliss, J. Halparin, D. Gruber et al., Development of attentional networks in childhood, Neuropsychologia, vol.42, issue.8, pp.1029-1040, 2004.
DOI : 10.1016/j.neuropsychologia.2003.12.012

J. Rusiecki, A. Baccarelli, V. Bollati, L. Tarantini, L. Moore et al., Global DNA Hypomethylation Is Associated with High Serum-Persistent Organic Pollutants in Greenlandic Inuit, Environmental Health Perspectives, vol.116, issue.11, pp.1547-1552, 2008.
DOI : 10.1289/ehp.11338

URL : http://europepmc.org/articles/pmc2592276?pdf=render

R. Saito, M. Smoot, K. Ono, J. Ruscheinski, P. Wang et al., A travel guide to Cytoscape plugins, Nature Methods, vol.8, issue.11, pp.1069-1076, 2012.
DOI : 10.1038/nbt.1567

URL : http://europepmc.org/articles/pmc3649846?pdf=render

G. Seckmeyer, M. Klingebiel, S. Riechelmann, I. Lohse, R. Mckenzie et al., A Critical Assessment of Two Types of Personal UV Dosimeters, Photochemistry and Photobiology, vol.35, issue.1, pp.215-222, 2011.
DOI : 10.1175/1520-0450(1996)035<1860:AAFISU>2.0.CO;2

M. Shi and C. Weinberg, How much are we missing in SNPby-SNP analyses of genome-wide association studies?, Epidemiology, vol.22, issue.6, pp.845-847, 2011.

R. Slama and A. Werwatz, Controlling for continuous confounding factors: non- and semiparametric approaches, Revue d'??pid??miologie et de Sant?? Publique, vol.53, issue.2, pp.2-65, 2005.
DOI : 10.1016/S0398-7620(05)84769-8

URL : https://hal.archives-ouvertes.fr/inserm-00085335

J. Sobus, Y. Tan, J. Pleil, and L. Sheldon, A biomonitoring framework to support exposure and risk assessments, Science of The Total Environment, vol.409, issue.22, pp.4875-4884, 2011.
DOI : 10.1016/j.scitotenv.2011.07.046

L. Trasande, C. Cronk, M. Durkin, M. Weiss, D. Schoeller et al., Environment and Obesity in the National Children???s Study, Environmental Health Perspectives, vol.117, issue.2, pp.159-166, 2009.
DOI : 10.1289/ehp.11839

M. Ulaszewska, P. Ciffroy, F. Tahraoui, F. Zeman, E. Capri et al., Interpreting PCB levels in breast milk using a physiologically based pharmacokinetic model to reconstruct the dynamic exposure of Italian women, Journal of Exposure Science & Environmental Epidemiology, vol.5, issue.6, pp.601-609, 2012.
DOI : 10.1007/s10653-011-9382-6

URL : https://hal.archives-ouvertes.fr/ineris-00963410

B. Van-den-bergh, Developmental programming of early brain and behaviour development and mental health: a conceptual framework, Developmental Medicine & Child Neurology, vol.81, issue.Suppl. 1, pp.19-23, 2011.
DOI : 10.1111/j.1467-8624.2009.01399.x

M. Vrijheid, M. Casas, A. Bergstrom, A. Carmichael, S. Cordier et al., European Birth Cohorts for Environmental Health Research, Environmental Health Perspectives, vol.120, issue.1, pp.29-37, 2012.
DOI : 10.1289/ehp.1103823

URL : https://hal.archives-ouvertes.fr/hal-00875997

V. Vuontela, M. Steenari, S. Carlson, J. Koivisto, M. Fjällberg et al., Audiospatial and Visuospatial Working Memory in 6-13 Year Old School Children, Learning & Memory, vol.10, issue.1, pp.74-81, 2003.
DOI : 10.1101/lm.53503

D. Wigle, T. Arbuckle, M. Turner, A. Berube, Q. Yang et al., Epidemiologic Evidence of Relationships Between Reproductive and Child Health Outcomes and Environmental Chemical Contaminants, Journal of Toxicology and Environmental Health, Part B, vol.116, issue.1, pp.5-6373, 2008.
DOI : 10.1136/jech.58.1.18

C. Wild, Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology, Cancer Epidemiology Biomarkers & Prevention, vol.14, issue.8, pp.1847-1850, 2005.
DOI : 10.1158/1055-9965.EPI-05-0456

C. Wild, The exposome: from concept to utility, International Journal of Epidemiology, vol.41, issue.1, pp.24-32, 2012.
DOI : 10.1158/1055-9965.EPI-11-0391

J. Wright, N. Small, P. Raynor, D. Tuffnell, R. Bhopal et al., Cohort Profile: The Born in Bradford multi-ethnic family cohort study, International Journal of Epidemiology, vol.38, issue.4, pp.978-991, 2013.
DOI : 10.1093/ije/dyp270