Évaluation des risques cumulatifs en Lorraine : un cadre de travail pour caractériser les inégalités environnementales

Abstract : The study explores spatial data processing methods and the associated impact on the characterization and quantification of a combined health risk indicator at a regional scale with fine resolution. To illustrate the methodology of combining multiple publicly available data sources, we present a case study of the Lorraine region (France), where regional stakeholders were involved in the global procedures for data collection and data processing. Different indicators are developed by combining technical approaches for assessing and characterizing human health exposure to chemical substances (in soil, air and water) and noise risk factors. The results allow identification of pollutant sources, determinants of exposure, and potential hotspot areas. A test of the model’s assumptions to changes in sub-indicator spatial distribution showed the impact of data transformation on identifying more impacted areas. Cumulative risk assessment enable the combination of quantitative and qualitative evaluation of health risks by including stakeholders in the decision process, helping to define a subjective conceptual analysis framework or assumptions when uncertainties or knowledge gaps exist.
Document type :
Journal articles
Complete list of metadatas

https://hal-ineris.archives-ouvertes.fr/ineris-01869664
Contributor : Gestionnaire Civs <>
Submitted on : Thursday, September 6, 2018 - 3:51:12 PM
Last modification on : Friday, September 7, 2018 - 1:11:29 AM
Long-term archiving on : Friday, December 7, 2018 - 7:42:30 PM

File

2017-430.pdf
Publication funded by an institution

Identifiers

  • HAL Id : ineris-01869664, version 1

Collections

Citation

Julien Caudeville, Despoina Ioannidou, Emmanuelle Boulvert, Roseline Bonnard. Évaluation des risques cumulatifs en Lorraine : un cadre de travail pour caractériser les inégalités environnementales. Rapport Scientifique INERIS, 2017, 2016-2017, pp.42-43. ⟨ineris-01869664⟩

Share

Metrics

Record views

238

Files downloads

10