Skip to Main content Skip to Navigation
Journal articles

Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM10 oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis

Abstract : The oxidative potential (OP) of particulate matter (PM) measures PM capability to potentially cause anti-oxidant imbalance. Due to the wide range and complex mixture of species in particulates, little is known about the pollution sources most strongly contributing to OP. A 1-year sampling of PM10 (particles with an aerodynamic diameter below 10) was performed over different sites in a medium-sized city (Grenoble, France). An enhanced fine-scale apportionment of PM10 sources, based on the chemical composition, was performed using the positive matrix factorization (PMF) method and reported in a companion paper (Borlaza et al., 2020). OP was assessed as the ability of PM10 to generate reactive oxygen species (ROS) using three different acellular assays: dithiothreitol (DTT), ascorbic acid (AA), and 2,7-dichlorofluorescein (DCFH) assays. Using multiple linear regression (MLR), the OP contributions of the sources identified by PMF were estimated. Conversely, since atmospheric processes are usually non-linear in nature, artificial neural network (ANN) techniques, which employ non-linear models, could further improve estimates. Hence, the multilayer perceptron analysis (MLP), an ANN-based model, was additionally used to model OP based on PMF-resolved sources as well. This study presents the spatiotemporal variabilities of OP activity with influences by season-specific sources, site typology and specific local features, and assay sensitivity. Overall, both MLR and MLP effectively captured the evolution of OP. The primary traffic and biomass burning sources were the strongest drivers of OP in the Grenoble basin. There is also a clear redistribution of source-specific impacts when using OP instead of mass concentration, underlining the importance of PM redox activity for the identification of potential sources of PM toxicity. Finally, the MLP generally offered improvements in OP prediction, especially for sites where synergistic and/or antagonistic effects between sources are prominent, supporting the value of using ANN-based models to account for the non-linear dynamics behind the atmospheric processes affecting OP of PM10.
Document type :
Journal articles
Complete list of metadata

https://hal-ineris.archives-ouvertes.fr/ineris-03310548
Contributor : Gestionnaire Civs Connect in order to contact the contributor
Submitted on : Friday, July 30, 2021 - 3:23:35 PM
Last modification on : Monday, August 2, 2021 - 11:33:53 AM

File

2021-086.pdf
Publication funded by an institution

Identifiers

Collections

INERIS | UGA | CNRS | INSU | IRD | IGE | INSERM

Citation

Lucille Borlaza, Samuël Weber, Jean-Luc Jaffrezo, Stephan Houdier, Rémy Slama, et al.. Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM10 oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis. Atmospheric Chemistry and Physics, European Geosciences Union, 2021, 21 (12), pp.9719 - 9739. ⟨10.5194/acp-21-9719-2021⟩. ⟨ineris-03310548⟩

Share

Metrics

Record views

55

Files downloads

63