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ABSTRACT 

In post-mining regions with seismic hazard, timely decision making for risk management faces the challenge of 

quick and reliable detection and location of seismic events. As a response to the increasing density of monitoring 

stations, generating large volumes of seismic data, automatic, full waveform-based methods have been developed 

in recent years in global seismology. Such methods often cannot be directly applied to post-mining monitoring 

with a limited station coverage, as it is the case when temporarily networks are installed as an emergency response. 

In this paper we propose a new methodology that bridges this gap and enables the application of a full waveform, 

backprojection based method (BackTrackBB) to data of sparse network. The methodology was successfully tested 

on an abandoned and flooded underground coalmine in South-eastern France. Steps preceding BackTrackBB 

application were implemented in order to remove the coherent noise that otherwise results in numerous false 

detections. First results indicate that seismic activity in the study area is controlled by water level variation within 

former room-and-pillar mine works and fault segments (re)activation below them. 
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1. INTRODUCTION 

1.1.  Challenges of microseismic monitoring in post-mining conditions  

With the rising number of worldwide mining closures in the last few decades, potential hazard of abandoned 

mining districts in post-mining period started raising concerns of governments due to potential socio-economic 

impact. Therefore, many countries developed regulations for mine closure processes and management of post-

mining hazards, especially in urban areas, where hazard identification and location of exposed zones needs to be 

as precise as possible. Potential consequences affecting people or infrastructure can persist long time and include 

modifications of the underground water flow, surface instabilities, toxic gas emission or discharge of potentially 

dangerous chemicals into environment. Post-mining hazard assessment and mapping methods are based on the 

nature of phenomena, and have as objective to identify potentially dangerous areas, determine the possible 

intensity of the foreseeable phenomena and predict the probability of its occurrence in observed zone (Didier et 

al. 2008). 

Surface instability hazard that can affect areas with underground mining works depends on the geological context 

and exploitation techniques. Often implemented in most sensitive zones, microseismic monitoring is proven to be 

a valuable hazard assessment tool (Kinscher et al. 2017) for measurement of the failure initiation in rocks and 

expected ground surface instabilities such as subsidence (sudden collapse or continuous subsidence). This is 

especially important in the areas where risk cannot be reduced with other options such as backfilling, which is 

rarely used due to its high cost (Contrucci et al 2019; Contrucci et al. 2011; Contrucci et al. 2008; Couffin et al. 

2003, Didier 2008). 

Hazard assessment and mapping often faces challenges as mining areas can be large, and, as mines are sometimes 

abandoned several decades ago, data such as technical notes or maps are frequently lost (e.g. in Lorraine region 

in France, Contrucci et al. 2019; Bennani et al. 2003). Consequently, the determination of zones with priority for 

seismic monitoring can be difficult. Often seismic networks in such large mining areas are rather sparse (due to 

the large extent of the potential risk areas, as well as for economic reasons) and very often consist of only a single 

antenna, such as borehole sensors, positioned at a place identified as having the highest risk. These single station 

networks do not have high performance in terms of seismic event location accuracy and are clearly focused on 

event detection. When seismicity appears in any part of these large mining areas, complementary temporal mobile 

seismic monitoring networks could be installed to improve location accuracy and better understand the origin of 

seismic sources. Temporary networks mostly comprise a very low number of stations (as in case of Gardanne 

mine) which are sometimes only single-component geophones. Automatic processing of recorded seismic data 
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for such sparse “task force”’ networks is challenging. Therefore, an automatic detection and location method 

applicable to seismic monitoring networks of limited station coverage composed of one-component geophones 

would be of great value especially in emergency situations where real-time operational monitoring is required.  

1.2. Recent developments of automatic detection and location methods 

Standard approaches for detection and location in microseismic monitoring are generally adapted from global 

seismology, typically relying on manual or automatic P- and S-wave phase picking, sometimes combined with 

evaluation of polarization angles (e.g. Abdul-Wahed et al. 2001, Oye and Roth 2003, Contrucci et al. 2010) 

The continuous increase in seismic data availability and quality due to the increased numbers of monitoring 

stations and networks in global earthquake monitoring has led to the development of various automatic detection 

and location methods with better detection capacities, contributing to a more thorough analysis of seismicity, due 

to detection of lower magnitude events leading to the lowering catalogue’s magnitude of completeness, and 

developing better constrains on location, with decreased location uncertainties or errors. 

Waveform‐based location methods that have emerged in recent years provide an alternative to the conventional 

phase-picking based techniques. They bypass phase picking and identification, focusing on the information 

provided from full waveform analysis. Waveform-based methods comprise partial waveform stacking (e.g. L. Li 

et al. 2018), time reverse imaging ( e.g. Z. Li & van der Baan 2016), wavefront tomography (e.g. Diekmann et al. 

2019), and full waveform inversion (e.g. Willacy et al. 2019), adapted from migration or stacking techniques in 

exploration seismology. These methods have been rapidly gaining popularity due to their simplicity and minimal 

necessary a priori constrains (Cesca & Grigoli 2015), proving to provide robust and effective source location 

results at various scales and allowing to detect and locate events with low signal‐to‐noise ratio (SNR) (L. Li et al. 

2020). Among the recently developed automatic methods, BackTrackBB (further – BTBB; Poiata et al. 2016), a 

methodology for detection and space–time location of seismic sources based on multiscale, frequency-selective 

coherence of the wavefield characteristics recorded by dense large-scale seismic networks and local antennas, 

showed significant improvement in detection and location performance for different environments. The detection 

capacity of such coherence-based full waveform methods as BTBB often shows improvement by a factor 10 

compared to standard triggering-based approaches (e.g., López-Comino et al. 2017; Aden-Antoniow et al., 2020). 

The method consists of signal transformation by constructing characteristic functions (CFs), and further the 

station-pair time-delay functions estimation, exploiting information on the coherency of the CFs between station-

pairs. Finally, detection and location are performed on time-series of 3D spatial likelihood images, created from 

spatial mapping and stacking of station-pair time- delay estimate functions. 
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These new, automatic full waveform approaches have been so far applied to different industrial activities including 

(active) mining environment. However, they are still not standard in operational microseismic monitoring (e.g. 

Gibbons & Ringdal 2006, Gharti et al. 2010, Grigoli et al. 2013, Palgunadi et al. 2019). Detailed overview of 

developments for the full waveform-based detection and location methods, related challenges and recent 

applications can be found in Cesca & Grigoli (2015) and L. Li et al. (2020). The strong potential of these methods 

in mining environments was recently demonstrated by the work of Palgunadi et al (2019), where the main 

challenges were related to the presence of a wide range of seismic noise sources, connected to the ongoing mining 

activity, and a high sampling rate of recorded data (several kHz). In this study, detection capacity of BTBB 

demonstrated improvement of 50 times compared to previously available catalogue, what improve reliability of 

rock burst hazard assessment.   

1.3. Seismic activity at the Gardanne former coalmine and connection with hydrogeological 

conditions 

The Gardanne underground coalmine, in Southeastern France, was industrially exploited since 18th century until 

final closure in 2003 (Figure 1). Zones of high risk of ground movements, related to mine workings instability, 

were defined by GEODERIS (public interest group, providing assistance and technical expertise on post-mining 

to the French government) as a part of post-mining management following the mine closure (Geoderis 2010) and 

monitored since 2008 with permanent seismic monitoring network of Ineris (French National Institute for 

Industrial Environment and Risks) (Figure 1, Figure 2, Figure 3).  

After mine closure and stopping of the mine pumping, a gradual rise of underground water level led to progressive 

flooding of the residual voids, starting from the deeper parts of mine workings, on the west (around -1100 m 

NgF1), and progressing towards the east (around -10 m NgF). Pumping activity, controlled by pumps set in a 

former mine shaft Gérard well (position shown in figure 3b) and managed by BRGM (the French Geological 

Survey), started again in 2010, to avoid any overflow of mineralized water at the surface. Since then, water level 

around -10 m NgF is relatively stable by pumping, with annual fluctuations of the order about twenty meters 

(Dominique 2016b). In addition to underground waters, the influence of effective rain on the rise of the water 

levels has also been noticed (Dheilly & Brigati 2015). 

 
1 m NgF  is a unit referring  to The General Levelling of France (nivellement général de la France) with the 'zero 
level' determined by the tide gauge at Marseille. In this area 0 m NgF corresponds to approximately 400m of 
depth below surface. 
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Following the flooding front arrival to the eastern part of the mine in 2010 (indicated by the water level rise in 

Gérard well), seismicity started to occur there (Figure 1, Figure 2, Figure 3a).  

Corresponding seismic events were, unexpectedly, located outside of the previously identified risk zones, 

monitored with Ineris permanent network. Since then, swarming seismic activity has been re-appearing 

periodically in the same area approximately every two years. The strongest events with local magnitude close to 

2 are occasionally felt by local population, which has led to rising concerns regarding seismic hazard and risk 

(Matrullo et al. 2015, Dominique 2016a, Kinscher et al. 2018).  

 

 

Figure 1 Timeline of important events in the study area of Gardanne mine, and available data for this study: 

starting from the mine closure in 2003, followed by turning off the pumps and gradual flooding of mining works 

(blue line). Following the Geoderis risk analysis, Ineris installed in 2008 permanent monitoring network in areas 

classified as having risk of ground instabilities. Flooding front reaches east part of mine in 2010 and soon after 

first seismic activity starts appearing in north east part of mine, outside of monitoring zones . Pumping of water 

restarted in 2010 to control the flooding front . Following again increase of seismic activity in 2012, BRGM 

installed temporary (sparse) monitoring network during 2013/2014 . Zoomed in period 2013-2017 shows BRGM 

network station configuration changes in time. Data available for this study cover period 2014-2017 . Ineris 
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seismic catalogue is available for period starting 2008 until today, while BRGM seismic catalogue covers 2 years: 

2014-2015. 

 

In 2013 the BRGM installed an additional temporary monitoring network in the seismic swarm area in order to 

investigate the origin of seismicity (Figure 3b). The network, consisted of 2 to 5 stations within observed period 

(the configuration changes with time as shown in details in Figure 1), all equipped with identical three-component 

accelerometers, installed on the surface and irregularly spaced at approximately 1 to 2 km one from another, across 

the approximately 10 km2 seismically active zone (Figure 3b). Data are recorded both in continuous and triggered 

mode. 

Prior analysis of seismic data revealed apparent connection of seismic activity with seasonal changes of 

underground water level in the mine, as well as with pumping rates at Gérard well (which are changing during 

time) (Dominique 2016b), as provided by piezometric measurement at the well, whose location is indicated in 

Figure 3b. 

The presence of larger number of seismic multiplet families, which could indicate nearby interacting fault 

segments or repetitive ruptures on identical segments (seismic repeaters) resulting from surrounding aseismic 

creep, was also discover (Kinscher 2017, Namjesnik et al. 2019). Source mechanism analysis of the events 

indicated existence of normal faults located below mining works, striking NW-SE in coherence with the 

orientation of preexisting faults (Kinscher 2017).  

 

 

 



8 
 

Figure 2 Gradual flooding of mine works and first appearance of seismicity as flooding front reaches mine works 

level at northeast area in 2010. Water level at Gérard well GW (blue line), corresponds to flooding front progress 

through mine works shown in Figure 3a, together with time distribution of seismic events of Ineris catalogue in 

period 2008-2017 (all events shown as dotted line, events located in study area shown as full red line) 
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Figure 3 Flooded abandoned Gardanne mine with observed seismicity and monitoring networks. a) Flooded part 

of mine works shown in blue. Seismicity shown as a function of magnitude by coloured dots, observed by Ineris 

monitoring network in period 2008-June 2020. Flooding front progress through mine works is indicated by dark 

blue lines and corresponding dates of arrival. Gardanne mine location indicated by red cross mark on the inset 
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map of France. URL source of original map: https://d-maps.com/carte.php?num_car=2812 b) Gardanne mine area 

with permanent monitoring network installed in 2010 (Ineris) in risk area (orange triangles), BRGM temporary 

monitoring network installed since 2013 in study area (shown in zoom, green triangles), with shown stations active 

within period 2013-2017, and two available piezometric measurements: Gérard well (GW, purple triangle), 

considered as indication of water level in mining works, and Fuveau Regagnas well (F, purple triangle), indication 

of efficiency rain in the area.  

 

1.4. Objectives of this study 

For a better understanding of the geomechanical processes governing the seismicity and an eventual re-assessment 

of seismic hazard, accurate detection and precise location of microseismic events are crucial. An automated 

detection and location process is necessary, due to the large volume of available data, with a main challenge of 

insufficient density of the seismic stations.  

In this paper we successfully adapted and applied for the first time an automatic full waveform-based detection 

and location method BTBB, initially developed for dense seismic networks, to the continuous data recorded by a 

sparse seismic monitoring network in post-mining setting of Gardanne mine (example shown in Figure 4).  

To our knowledge this is one of the few attempts of applying the coherence-based full waveform methods to data 

of sparse networks, or application in post-mining microseismic monitoring, as it is the case in Gardanne, since the 

waveform-based methods are multi-station approach, exploiting the array-coherence of the recorded wavefield or 

its properties. Similarly to our application of BTBB to sparse network, another waveform method has been 

previously applied to the Pohang Earthquake sequence (Grigoli et al 2018) with an almost equally sparse network. 

Detection and location criteria of BTBB, which is designed to exploit the coherency of signals characteristics 

across the stations in order to detect and extract seismic event, represented a critical issue in our study. Due to 

similar coherency values of some noise sources and microseismic events in our data, it was not always possible 

to make a distinction between false and true event detection, using only the BTBB detection parameters such as 

MaxStack (maximum value of 3D likelihood source location function) and RMS (between the theoretical and 

observed time delay estimates), due to our inability of setting discrimination threshold values for those. As it can 

be observed from Figure 5a, which compares the values of MaxStack vs RMS for all detections by BTBB obtained 

from continuous data of December 2014 and for events in BRGM catalogue in the same period, the separation is 

not evident. Figure 5b shows the example of a trace where MaxStack and RMS have similar values in two 2-

seconds windows (in grey), one with a clearly identifiable (high signal-to-noise ratio) seismic event, while the 

https://d-maps.com/carte.php?num_car=2812
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other corresponding to the incoherent noise.  Therefore, the processing of 4 years of continuous seismic data of 

Gardanne mine network required the development of additional pre-BTBB processing steps to overcome this 

issue.  

The developed methodology represents a novel approach for noise removal from continuous data, which also 

allows to significantly reduce the volume of managed data. A location quality-based classification system, 

followed by clustering analysis, was designed for the events in derived catalogue providing a clearer image of the 

active geological structures and allowing a preliminary interpretation of possible triggering mechanisms for 

seismicity.  

This approach has a potential for implementation as (near) real-time operational seismic monitoring in the 

Gardanne site, as well as in others sites with sparse networks. It can be particularly useful when monitoring 

network comprises only one-component instruments, as is often is the case for the mobile or temporary 

deployments of task-force missions during the periods of stronger seismic activity. 

 

 

 

Figure 4 Example of a successful detection and location of seismic event as result of application of BTBB on 

extracted 12 seconds windows of vertical components of four available stations in study area, containing a seismic 

event a) available traces (grey lines) with final broad-band multi-band frequency characteristic functions (brown 

lines). Vertical blue and dashed red bars indicate picked and theoretical P-wave arrival times from estimated 

location b) A horizontal and two vertical sections through the maximum of imaging function corresponding to 

determined location (black star) of an earthquake identified in the BRGM catalogue. White triangles correspond 

to station locations. 
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Figure 5 Challenges of discriminating between detected coherent noise and detected events when applying BTBB 

directly to continuous data of December 2014 testing dataset of 4 active stations, a) parameters MaxStack vs RMS 

of all detections (white dots) and seismic events identified from BRGM catalogue (blue dots). b) extracted 12 

seconds window of vertical component recordings for three available stations, corresponding to the detections 

shown in a) with similar values of parameters in detection windows (grey areas), for seismic event and noise. 

2. PROCESSING OF GARDANNE SEISMIC DATA 

2.1. Data used in the study  

Data processed in this study are continuous recordings from the BRGM temporary seismic network, from period 

2014-2017 (Figures 1 and 3b). Figure 1 provides a detailed timeline of the BRGM station configuration changes 

during this period: from 3 initially available stations (installed in 2013) to 5 stations starting from the beginning 

of 2017. Shorter periods, during which some stations are not operational (due to malfunction for example) are not 

shown. 

The BRGM’s seismic event catalogue (Dominique 2016b) covers the period from June 2013 to 31st December 

2015. In this catalogue, locations were determined based on standard techniques that include manual picking of 

P- and S- phases and iterative location approach of minimizing the difference between the observed and predicted 

arrival times at a number of seismic stations. Catalogue lists 756 events with magnitude range −1.3 ≤ 𝑀𝐿 ≤ 1.7, 

among which 606 are located within the study area. The vast majority of events were located using the data 

recorded at the nearest stations. Estimated hypocentral depths are mostly several hundred meters beneath mine 

works (Dominique 2016b). The data recorded during years 2016 and 2017 were unprocessed prior to this study. 

In addition to BRGM’s catalogue, Ineris’s seismic event catalogue is available for the period 2008-June 2020. It 

contains 2-3 times less events than BRGM catalogue, for the overlapping period of 2014-2015, due to the larger 
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distance of Ineris stations (Figure 3b) from the study area. However, as it covers also the period of 2016-2017, 

analyzed in this study, when BRGM catalogue is not available, we use it for qualitative evaluation of our results.  

In order to exploit the benefits of BTBB method automatic processing and refine the location accuracy, we 

developed pre-processing detection and location steps with implemented noise removal criteria, focused on 

reduction of noise in the data and minimizing the number of false detections. As shown in Figure 6, the processing 

scheme is divided into detection and location steps, followed by a quality assessment scheme. This methodology 

follows a principle similar to the two- folded approach presented in (Palgunadi et al. 2019). 

The first step comprises a noise robust, modified STA/LTA detection, applied directly to the time-continuous data 

in a moving time-window. Following it, the location step consists of an amplitude-ratio based location algorithm, 

followed by a relocation with BTBB method. An additional gain of this approach, besides noise-minimized 

detection and location of pre-BTBB processing is the reduction of a large volume of continuous data to a more 

manageable data volume. Lastly, a classification scheme based on event location quality assessment was designed 

allowing to distinguish between high and low quality events and locations, consequently simplifying the 

interpretation of results. The final catalogue comprises the epicentral location, the local magnitude, the seismic 

moment and moment magnitude as well as a class assigned to each event based on an assessed quality of location. 

The time-continuous data of December 2014 were used for method parametrization of detection and location 

steps. This month corresponds to increased seismic activity, for which BRGM catalogue that lists 214 events in 

the observed area is available for comparison. Four stations were active at that time and the network remained 

unchanged during this month. Developed methodology is further applied to full testing the data set recorded during 

the period of 2014-2017. Out of these data, period of 2014-2015 was used for development of the quality 

evaluation system, due to availability of the BRGM catalogue. Details of each step of processing scheme are 

described in the following paragraphs. 
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Figure 6 Scheme of the detection and location methodology developed in this study, comprising detection and 

location steps and event classification system based on location accuracy assessment. Maximum value of 

parameters such as absolute amplitude of STA/LTA (MAA) and maximum value of root-mean-square of 

STA/LTA (MRMS) are defined in equations [1] and [2] (see section 2.1.1 for details), parameter MaxStack 

represents maximum value of 3D likelihood source location calculated within BTBB method (see section 2.1.2 

for details). Final outcome is seismic event catalogue with event category,  epicentral location, time of origin, 

local magnitude, seismic moment and moment magnitude. 

 

2.1.1. Step 1: Event detection 

In step 1, with the objective to detect potential events in the  continuous dataset while simultaneously minimizing 

false detections, we introduce parameters that represent noise removal criteria within standardly used for 

triggering signal characterization method known as “short term average over long term average trigger” 

(STA/LTA) (Allen 1982, Withers et al. 1998).  

Only the vertical components have been used in analysis, to allow a wider application of developed approach to 

other post-mining environments to the temporary monitoring networks consisting of one- component geophones.  

By visually inspecting the spectral content of known events in testing data set we identify dominant frequency 

range of the targeted events and divide our further analysis into three frequency bands: 1-20 Hz, 20-60 Hz and 1-

100 Hz. Use of the multiple frequency bands allows a similar detection capacity for events with different, due to 

the source size and location, spectral content. 
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The filtered records (Figure 7a) are transformed into characteristic function (CF) in each frequency band 

separately, using a recursive short-term average over long-term average (STA/LTA) algorithm (Withers et al., 

1998) (Figure 7b). Both STA and LTA windows lengths are adjusted based on the frequency range. As a general 

rule, we decrease both STA and LTA windows with the increase of frequency. The ratio of the LTA and STA 

window lengths is always kept as 10 (e.g., Palgunadi et al. 2019). 

 

Figure 7 Example of step 1 processing for extracted 12s window containing an identified seismic event from 

BRGM catalogue. a) Vertical traces for each station filtered in three frequency bands. b) STA/LTA CF of each 

filtered trace. Red line indicates pre-set triggering threshold level. Threshold is reached for noise (window 2 – 4 

s) and for the earthquake (window 8 – 10 s). c) Noise removal criteria parameters calculated in 2s moving window 

(black dots, red and blue dots) with set threshold values (red dashed line). Noise check for windows whose CF 

was above threshold in b): values below threshold for noise (window 2-4s, red dot), values above threshold for 

earthquake (window 8-10s, blue dot) 
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Figure 8 Setting threshold values in each frequency band for first noise removal criteria based on comparison of 

MAA and MRMS parameters of seismic events identified from BRGM catalogue and surrounding noise. Blue 

and red points correspond to detections marked by red and blue dots in Figure 7c. 

 

To examine if an event is recorded on at least one station within the moving time-window, we check if the 

maximum of STA/LTA of at least one signal of any station in one of the frequency bands reaches the 

predetermined STA/LTA trigger value. Decision on trigger value of the STA/LTA CF is based on testing several 

different STA/LTA trigger levels over the entire testing dataset, taking into consideration the number of events of 

BRGM catalogue that where triggered versus total number of triggers. As we can observe in the example in Figure 

7b, this condition is reached in two different moving time-windows, for both noise source and event source.  

To reduce false triggers, and further examine signal characteristics, we introduce two additional parameters: the 

maximum value of absolute STA/LTA CF amplitude (MAA) and the maximum value of root-mean-square 

STA/LTA CF (MRMS). The values of these parameters are calculated in 2 seconds moving time-window for CFs 

of each station, in all 3 frequency bands 𝑓𝑖 separately. In general, the moving time-window length needs to be 

chosen based on the largest distance between the stations in the network to account for the maximum expected 

time delay between the signals of all stations. Our choice of window length corresponds to approximately 1.5 of 

the estimated maximum expected time delay of the farthest station pair in our network (S3 and S4, with distance 

approximately 2.3 km between them) for S wave velocity of 1.8 kms-1. 

Finally, the criteria parameters to separate noise and event detections are derived as mean values across all stations 

and for each frequency range separately:  
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𝑚𝑒𝑎𝑛 𝑀𝐴𝐴 (𝑓𝑖) =
1

𝑛
∑ max |

𝑆𝑇𝐴(𝑓𝑖)

𝐿𝑇𝐴(𝑓𝑖)
|

𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠

 [1] 

 

𝑚𝑒𝑎𝑛 𝑀𝑅𝑀𝑆 (𝑓𝑖) =
1

𝑛
∑ max  (𝑅𝑀𝑆 (

𝑆𝑇𝐴(𝑓𝑖)

𝐿𝑇𝐴(𝑓𝑖)
))

𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠

 [2] 

 

Choice of parameters MAA and MRMS for the noise removal criteria is based on the observation that seismic 

events in most cases have a higher energy and a longer duration recorded at multiple stations compared to noise, 

implying that the RMS envelope of STA/LTA function and the maximum of STA/LTA function also have 

distinctly high values for events, compared to the values for noise. It can be observed on the example in Figure 

7c, where points present values of parameters in equations (1) and (2), calculated for each moving time-window.  

Threshold values of parameters defined in equations (1) and (2), for each frequency band 𝑓𝑖  separately, are 

determined based on the values calculated separately for all previously known events of the testing dataset, already 

in BRGM catalogue (213 events), and for preceding noise time windows. As we can see in Figure 8, in each 

frequency band, a representative range of values for both noise and events can be distinguished. Nevertheless, due 

to the existing significant overlap in parameter values, decision on threshold selection is subjectively adjusted 

based on the desired outcome (similarly to setting of the STA/LTA trigger threshold, which can be either more 

noise-free dataset but with potential loss of weaker seismic events, or a dataset where loss of seismic events is 

prevented but higher number of false triggers remains).  
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Figure 9 Example of amplitude ratio-based location method applied to the two detections passing first noise 

removal criteria. a) determined location of event with P(l) value above second noise removal criteria threshold b) 

determined location of noise with P(l) value below second noise removal criteria threshold. 

 

The analysis of triggered 2 seconds time-windows in multiple frequency bands enables indirect the assessment of 

its spectral content. As the seismic events tend to have a wider spectral content compared to the more 

monochromatic noise sources, we declare the trigger as an event if values of parameters (1) and (2) reach the 

thresholds in all three frequency bands. Triggers are assessed as noise in case of a narrow-band detection and an 

inability to reach a threshold in all 3 frequency bands and are, therefore, removed from the dataset. 

Values of parameters (1) and (2) for selected example of detected noise and event (shown in Figure 7 and Figure 

8), confirm the accuracy of our noise removal criteria. 

Further applying the described noise robust detection procedure to our testing dataset (one month of continuous 

data of December 2014) resulted in 603 potential event detections, with 94% of previously known events of the 

BRGM catalogue being correctly identified. Due to roughly three more times of detections in this step, compared 

to the 213 events in the BRGM catalogue within the observed area for the same period, as well as due to the 

unlikely possibility that such increase results from previously undetected events (even if we account for some 

detected but non located events due to low magnitude (Dominique 2016b) or human error during manual 

processing), we performed a visual inspection of corresponding waveforms and confirmed that the detection still 

contains some unwanted triggers. Therefore, we further de-noise our detections and create a preliminary seismic 

catalogue in the next step, by introducing a second noise removal criteria based on the amplitude-ratio based 

location approach 

2.1.2. Step 2: Location  

Amplitude-ratio based location approaches, derived from attenuation law (Battaglia & Aki 2003), allow 

estimation of event location by determining amplitude ratio of station pairs (Taisne et al. 2011) and minimizing 

the error between expected and observed values. The importance of this location approach, which is part of our 

methodology, is that it provides the mean to recognize and remove remaining triggered noise in the dataset 

resulting from previous step.  

The main idea which lies behind the noise removal criteria that we introduce here is the significant difference in 

the values between the interstation amplitude ratios related to occurrences of noise and seismic event. These two 

types of signals manifest different attenuation behaviour due to differences in source location, as seismic events 
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are located at depth and often not in direct proximity to one particular station, in contrary to noise sources which 

are mostly at the surface and close to one station only. Consequently, the noise sources will result in significantly 

higher amplitude ratio values between the closest station and the other stations, compared to amplitude ratio values 

of seismic event sources.  

To determine the location of events, we follow the ideas of amplitude ratio based location method, previously 

applied to studies of salt solution mining microseismicity (Kinscher et al. 2015, 2016), and to mining induced 

microseismicity (Palgunadi et al. 2019). However, differences in environment of the present study allowed us to 

introduce modifications and somewhat simplify approach, following (Kinscher et al. 2017).  

As events of testing dataset are concentrated in smaller area, in this approach we do not calculate site effect. 

Calibration with seismicity focused in one zone would be misleading and would improve location only for that 

area, while introducing the bias in other zones distant from the one used for calibration. Reducing number of 

parameters allows us to avoid wrong calibration.  

We describe the attenuation law exclusively with a geometrical spreading, ignoring contributions from anelastic 

attenuation:  

 

 

where 𝐴𝑖 and 𝐴𝑗 are the maximum amplitudes of signals at stations 𝑖 and 𝑗, 𝑟𝑖 and 𝑟𝑗 are the source-station distances 

of the same station pair. We assumed a body wave geometric spreading behaviour with n =2 (Lay & Wallace 

1995) which provided a good fit for observed amplitude ratios as a function of the distance ratios obtained from 

manual location of the BRGM catalogue (Appendix A1, Figure 20).  

Indeed, we confirm that the fit is equally good for all frequency bands, justifying our choice of frequency 

independent attenuation model.  

The location of a detected potential event is determined based on the L1 norm misfit between observed amplitude 

ratios and theoretical amplitude ratios of each station pair and at the potential source point 𝑙 on the defined grid.  

Following expression [3], the theoretical (expected) values of amplitude ratios  𝑨𝒊,𝒋,𝒍𝒕𝒉𝒆𝒐𝒓𝒕𝒊𝒄𝒂𝒍
 for each station pair 

are estimated as a function of the inverse ratio of hypocentral distances, on a grid of predetermined (potential) 

sources: 

 

log10

𝐴𝑖

𝐴𝑗

= 𝑛 log10

𝑟𝑗

𝑟𝑖

  [3] 



20 
 

 

Grid of potential sources of each station pair is simplified and presented as a 2D plane fixed to the mine layer 

depths, while stations are distributed on the surface. Size of the grid was set to 4440 m (EW) x 2770 m (NS), 

which frames the area of expected locations, based on locations of events in BRGM catalogue. Spacing between 

grid points (potential sources) was set to 50 m, which represents the horizontal resolution of this location method.  

The observed amplitude ratio 𝐴𝑖,𝑗𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
(𝑓𝑘) of a potential event for station pair (𝑖, 𝑗) is determined as a ratio of 

the maximum absolute amplitudes, recorded at station 𝑖 and 𝑗 respectively, and filtered in the frequency band 𝑓𝑘: 

 

𝐴𝑖,𝑗𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
(𝑓𝑘) = log10

max|𝐴𝑖(𝑓𝑘)|

max|𝐴𝑗(𝑓𝑘)|
, 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟 (𝑖, 𝑗) [5] 

 

Observed amplitude ratios (equation [5]) for each station pair 𝑖 and 𝑗 are determined in a 2 seconds time-window 

corresponding to the trigger of the previous step. 

For every point 𝑙 on a defined grid of potential sources we determine the misfit between observed amplitude ratios 

and theoretical amplitude ratios of each station pair, expressed in a form of a PDF, for a mean of the values 

observed over all station pairs, summing over the three frequency bands: 

 

𝑃(𝑙) =
1

𝑛
∑ ∑ 𝑒

−| 𝑨𝒊,𝒋,𝒍𝒕𝒉𝒆𝒐𝒓𝒕𝒊𝒄𝒂𝒍
−𝐴𝑖,𝑗𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

(𝑓𝑘)| 2⁄
, 𝑎𝑡 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡 𝑙 

𝑠𝑡𝑎𝑡
 𝑝𝑎𝑖𝑟𝑠 𝑖,𝑗

𝑓𝑘

 
[6] 

where 𝑛 represents number of station pairs. Location of the event is determined as the grid point 𝑙 with the 

maximum value of 𝑃(𝑙). An example of event and noise time-window located with this approach is shown in 

Figure 9. 

 

 𝑨𝒊,𝒋,𝒍𝒕𝒉𝒆𝒐𝒓𝒕𝒊𝒄𝒂𝒍
= 2 ∙ log10

𝑟𝑗𝑙

𝑟𝑖𝑙

 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟 (𝑖, 𝑗) 𝑎𝑡 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡 𝑙  [4] 
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Figure 10. Bi-modal distribution of misfit probability P(l) values between observed and theoretical amplitude 

ratios, for all detections during December 2014 that passed first noise removal criteria and are located by 

amplitude ratio-based method (grey bars). P(l) values of seismic events from BRGM catalogue (white bars) allow 

setting threshold value for second noise removal criteria (black line). 

 

The described amplitude-ratio based location approach was applied to all triggered time-windows from December 

2014 that passed the detection procedure with noise removal criteria in the first step.  

As expected, due to differences in amplitude ratio values for noise and events, the histogram plot of maximum 

values of 𝑃(𝑙) for all triggers (Figure 10) reveals bi-modal distribution of values, interpreted as two normal 

distributions: the one on the left, with lower probability values, corresponding to a distribution of noise and the 

one on the right, with higher probability values, corresponding to distribution of seismic events, confirmed also 

by identifying the maximum of 𝑃(𝑙) values for events from BRGM catalogue, as shown in Figure 10. We exploit 

this observation to define the second noise removal criteria, by identifying the threshold value of 𝑃(𝑙) between 

events and noise. The threshold value in our case was determined as 𝑃(𝑙) = 2 (Figure 10) which allowed the 

elimination of the remaining false triggers from the dataset. 
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Figure 11 Comparison of locations determined in this study with 372 matching seismic event locations identified 

in BRGM catalogue during period of 2014-2015. a) BRGM location b) Matching events located by amplitude 

ratio based method and c) Matching events relocated with BTBB. 

 

Events passing second noise criteria were further relocated by BTBB method, which consists of two main steps: 

signal processing, and detection and location. In the signal processing step, the raw waveforms are transformed 

to multi-band frequency characteristic functions (CF), represented by kurtosis, i.e., the fourth central moment 

higher-order statistics function (HOS). In the second step, extracted time series of CFs are used for determining 

event location by exploiting their coherency across all stations, and the estimated location is associated to the 

maximum of 3D imaging functions, based on stack of station-pair time-delay estimates projected to a grid of 

theoretical time differences of arrivals, for assumed velocity model (Poiata et al. 2016, 2018). 

We configurate BTBB to calculate CFs in 50 logarithmically spaced frequency bands covering the same frequency 

range from 1Hz to 100 Hz as in part 1 of our analysis. The theoretical P-wave travel times necessary for second 

detection and location step are calculated using the Grid2Time routine of NonLinLoc program (Lomax 2005, 

2008), over the grid covering the same horizontal extent as that for the amplitude ratio location approach, however 
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with a denser, 10 m, spacing and depths up to 1.5 km, with a constant homogeneous velocity model VP =

4.1 kms−1 (Kinscher, 2017). Minimum value of MaxStack parameter was set to 0.7, which presents the detection 

threshold criteria.  

Comparing the events that were detected and located with our pre-BTBB steps, with the events of the BRGM 

catalogue for period of December 2014, we observe that 94% of the BRGM catalogued events were detected and 

pass the first criteria, and within those, 93% pass the second noise removal criteria. As expected, a small number 

of events from BRGM catalogue was left undetected (13 out of 213), due to values of their noise removal criteria 

parameters that was below the chosen thresholds, as can be seen in Figure 8 and Figure 10, or due to their origin 

outside of our defined grid. Finally, 314 events were located by the amplitude ratio-based method, out of which 

200 are BRGM catalogued events, while 114 events represent new detections. The number of relocated events is 

somewhat reduced, not only due to noise in the data but also due to the data availability that was limited sometimes 

to only 2 stations. BTBB successfully relocated 177 events, 166 of which are in the BRGM catalogue. Relocated 

with BTBB events have additional information of origin time.  

Following the described steps, the developed methodology was further applied to the entire testing dataset, the 

continuous data of 2014-2017. Parametrization (such as threshold values, sliding window size, criteria values, 

grid size etc.) were kept unchanged. As described in section 2.1, the network configuration varies in time as well 

as space during these 4 years and, depending on the observed period, consists of 2 to 5 stations, distributed over 

7 different locations (Figure 1, Figure 3b). 

Even though BTBB determines location based on a 3-D likelihood map, preliminary tests showed large errors in 

depth estimation, in comparison to BRGM catalogue. Due to the low number of stations, all of which are placed 

on the surface, dependence on assumed velocity model and use of P-phases only, we do not have a good depth 

resolution. Therefore, we disregard depth estimations and limit our catalogue to epicentral location only. 

The reinforcement of monitoring network within the observed area with additional instrumentation during 2019, 

will enable a necessary application of additional approaches to allow for constraining of source depths. One 

possible approach under consideration is the re-location of events with new developments of BTBB which 

implements S-waves into the analysis (Aden-Antoniow et al., 2020). However, due to the previously discovered 

presence of P-SV and SV-P converted phases within our data, probably caused by a layer of mine workings 

(Kinscher 2017), this approach could prove to be challenging. New investigations will need to focus on avoiding 

misinterpretation of these phases as direct S waves. 
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Local magnitudes, moment magnitudes and seismic moments were calculated as well for every detected event. 

More details on this step are provided in Appendix A2. 

2.2. Event classification and location quality assessment 

In order to assess the quality of the new seismic catalogue in terms of location accuracy, resulting location of 398 

events in period 2014-2015, common to BRGM catalogue, are compared to BRGM location, using it as a 

reference. During this period, our catalogue contains total of 2154 detections, out of which 1691 are new events, 

not appearing in the BRGM catalogue. Within the same period, the BRGM catalogue overall comprises 606 

events, out of which 131 are undetected with our approach.  

As we can observe in Figure 11, the BTBB location shows qualitatively a better consistency with BRGM catalogue 

(especially for stronger events) than the amplitude-ratio based locations, which are more spread out. 

As shown in Poiata et al. 2016, BTBB requires minimum three stations to determine the event location, meaning 

that, in our case, minimum three records need to have identifiable P-phase arrival, with high enough signal to 

noise ratio on CF’s. Even though all our detections have records of minimum 3 stations, events are often buried 

in noise and not visible on every available record, which can lead to false locations.  

In order to identify these low-quality events, we define event visibility criteria with STA/LTA function with 

threshold of 2, and we apply it to all available records for each potential event.  

Further, as shown on figure 12, we determine location errors as a function of event visibility. The location errors 

are based on the comparison of both amplitude-based location and BTBB location with matching locations of the 

BRMG catalogue, and defined as the Euclidean distance between them.  

As expected, BTBB location error increases for low visibility events, (Figure 12a) while it provides a better 

accuracy for events visible on a minimum 3 stations, compared to amplitude ratio based location (Figure 12b). 

Amplitude-ratio based location, as expected, provides more robust location quality for events visible on 2 stations 

only.  

We define events visible on minimum 3 stations as events of A and B class, with high quality BTBB locations. 

Events that are visible on less than 3 stations (n=26) are defined as C class events, and amplitude ratio location is 

assigned to them, as a better quality location. 
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We further assess the location quality of BTBB for high quality events visible on 3 or 4 stations (A and B class), 

as a function of local magnitude and visibility, as shown in Figure 13. This allows to discriminate between the 

highest quality events visible on minimum 4 stations with local magnitudes equal or higher than zero, which we 

define as class A events (n=66), and events of somewhat less accurate location, which we define as class B events. 

(n=306) 

Based on the described observations, we designed an event classification scheme, shown in Figure 14. 

 

 

Figure 12 Identification of highest quality events based on location error as a function of event visibility. a) Error 

of BTBB locations, b) Error of amplitude ratio-based locations. Events with high visibility (minimum 3 stations), 

are classified as A and B class with BTBB location providing better quality than amplitude ratio-based method 

(white area in a) and grey area in b)). For events with lower visibility (C class events) BTBB error distribution 

exceeds 2.5 km in some cases (grey area in a), while amplitude ratio-based location quality is more robust (white 

area in b). The box shows the distance between the quartiles, with the median marked as a line, and the `whiskers' 

show the extremes. Outliers, shown in the graph as separate points (diamonds), are the observations whose 

distance from the edge of the box (i.e. the quartile) is more than 1.5 times the length of the interquartile range. For 

each box, median and number of events in the corresponding category (n) are shown. 
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Figure 13 Error distribution of BTBB locations of class A and class B events as a function of event visibility and 

local magnitude distribution. a) error distribution for events visible on minimum 4 stations b) error distribution 

for events visible on minimum three stations. Highest quality events (class A) are determined as events with 

visibility on minimum 4 stations and local magnitude equal or above zero. Remaining events (grey area in a)) and 

white area in b) are classified as B class. The box shows the distance between the quartiles, with the median 

marked as a line, and the ̀ whiskers' show the extremes. Outliers, shown in the graph as separate points (diamonds), 

are the observations whose distance from the edge of the box (i.e. the quartile) is more than 1.5 times the length 

of the interquartile range. For each box, median and number of events in the corresponding category (n) are shown. 
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Figure 14. Event classification scheme based on location quality evaluation, applied to located events form new 

catalogue of 2014-2017. 

 

3. RESULTS OF 4 YEARS OF CONTINUOUS DATA ANALYSIS 

As previously mentioned, the methodology was applied to the full available dataset of 4-year (2014 – 2017) 

continuous data from BRGM monitoring network. Finally obtained catalogue for this period comprises 4705 

events.  
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The developed classification scheme allowed us to categorize all events in a new catalogue based on location 

quality. Out of 4705 events in the new catalogue, 364 were classified as A class events, 1624 as B class events 

and 2717 as C class events.  

To evaluate the method performance, we first compare the temporal distributions and the number of detected 

events of the new catalogue with previously available catalogues: the BRGM catalogue, available for period 2014-

2015 and comprising 606 events within the studied area, and the Ineris catalogue for the entire period 2014-2017, 

comprising 790 events within the studied area. 

As we can see on Figure 15, for the two periods of increased seismic activity (late 2014 and late 2016 to early 

2017) all catalogues are consistent, and the high quality A and B class events of the new catalogue provide a good 

match with both Ineris and BRGM catalogues, while indicating increased number of detections. However, low 

quality C class events of the new catalogue indicate two additional seismically active periods (middle of 2014 and 

middle of 2015). As these apparent increases of seismic activity have not been previously observed, it broadly 

implies that C class events correspond to a mixture of small magnitude earthquakes just above the noise level with 

strong uncertainties in location as well as some remaining noise sources. 
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Figure 15 Temporal distribution of events in new catalogue 2014-2017 a) comparison with temporal distribution 

of events in BRGM catalogue, available for period 2014-2015, and events of Ineris catalogue for period 2014-

2017, both limited to study area boundaries. b) temporal distribution of events of new catalogue, separated in 

classes based on developed classification scheme. 

 

The spatial distribution of events of the new catalogue of 2014-2015, separately for each class, is shown in Figure 

16. As we can observe, a clustering of the highest quality events of class A are clearly visible. The class B events, 

even though showing somewhat more diffuse image, also indicate clustering. The spatial distribution of the C 

events is very diffused. These observations confirm the good functioning of our estimated location errors and 

classification approach. With our developed classification system, we are thus able to reliably assess the quality 

of the detected events and use it as the basis of subsequent interpretation of the new seismic catalogue (see 

following section).  
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Figure 16 New catalogue 2014-2017 with events categorized and separated based on developed location quality 

based classification scheme a) class A, 364 events, b) class B, 1624 events and c) class C, 2717 potential events. 

 

4. DISCUSSION 

4.1. Connection of seismic activity with water level variations in the mine 

As previously mentioned, Figure 16 illustrates clear space clustering of events from the new catalogue, most 

clearly visible for the class A events. These observations are consistent with previous findings, as clustering of 

events was identified in the BRGM catalogue (Dominique 2016b).  

In order to separate, classify and discriminate clusters in an objective manner, we apply a K-means clustering 

analysis to the class A events, allowing us to avoid subjectivity in assigning events to each cluster visually (for 

details please see Appendix A1). Figure 17 shows 6 identified clusters with corresponding centroids in A class 

events (a) and class B events (b) assigned to same clusters. 

We observe also that clusters are spatially aligned with the direction of mine workings, which were oriented 

according to known discontinuities. Based on these findings we associate clusters to fault segments (Figure 17 c). 

Most seismically active clusters 1 and 5 are identified as part of one fault segment, clusters 2 and 4 as a part of 

second fault segment, while the position of clusters 3 and 6 correlate with position of previously known faults in 
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area. This is in agreement with previous findings (Matrullo 2015, Kinscher 2017) showing that the seismicity 

origin is beneath the mine workings, with source mechanisms showing normal faulting. 

As mentioned in the Introduction section of this paper, apparent connection of seismicity with hydrogeological 

conditions has been previously observed in the studied area of the mine (Figure 2, Figure 3a).  

The seismic activity of class A and class B events, as well as of each of the identified potential faults (clusters) 

separately is shown in Figure 18, in comparison with hydrological data from the Fuveau Regagnas well (location 

shown in Figure 3b).  

We consider hydrological data of this well a good indication of the amount of efficiency rain due the shallow 

depth of the well, as it does not reach depths of mine works or known aquifers. We observe that strongest seismic 

activity of most clusters correlates with rainfall periods (Figure 18), suggesting that rainfall presents a significant 

factor in the triggering and activation of faulting.  

Indeed, seismic triggering from rainfall is known from other sites (Ogasawara et al. 2002, Hainzl et al. 2006, 

Husen et al. 2007). In general, fluid induced seismicity due to industrial activity is widely known phenomena, 

where increased fluid pore pressure causes reduction of fault strength which can potentially lead to fault rupture. 

Seasonal re-charges of aquifers and precipitation have also been correlated with seismic activity in several cases 

(Saar & Manga 2003, Hainzl et al. 2006), and it was demonstrated that faults can be driven so close-to-failure that 

even tiny pressure variations associated with precipitation can trigger earthquakes at depths of few kilometres. 

However, the strongest activity of cluster 6 in the northwest is observed in a dry period, indicating the involvement 

of the other factors for the triggering mechanism of seismicity.  
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Figure 17 results of cluster analysis of highest quality events of new catalogue 2014-2017 a) K-means applied to 

A class events b) class B events assigned to same clusters and c) assumed fault locations and known faults 

locations. 
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Figure 18 Temporal distribution of seismic activity for A and B class events per day (top figure), and each cluster 

separately (figures bellow), compared with water levels at Fuveau Regagnas well (F on Figure 2b) presenting 

efficient rainfall (blue line). Bottom figure shows local magnitude of corresponding events. 

 

Figure 19 Spatio-temporal distribution of seismicity within two periods a) 2014-2015 b) 2016-2017. Station 

configuration changes are indicated: active station within observed period are shown with black triangles, while 

grey triangle are non active stations. Flooding front migration is shown with front position: dark blue indicates 

levels in this sector in observed period., while light blue indicates flood front position in preceeding period.  

 

Spatio-temporal distribution of seismicity, and its connection to flooding front migration within the two key 

periods can be observed on figure 19. In the period 2014-2015, flooding front fluctuations were confined to 

shallower depths of mine works, and strongest seismic activity is observed in the south east (cluster 1, 2 and 3). 

Period of 2016-2017, where flooding front withdrawal can be observed, is characterized by still active clusters in 

the southeast with the increased seismic activity observed in the northwest (clusters 4, 5 and 6). As we can see, 

the strongest seismic activity seem to follow the withdrawal of the flooding front (dark blue and light blue lines). 

However, when looking at the sequence of end 2016-early 2017 (figure 18 and 19), after a first moderate activation 

phase everywhere (with stronger cluster 4, green and 3,blue), there is a clear order of activation/migration from 

north to south, starting with cluster 6 (orange), followed by activity of cluster 5 (red), then cluster 1 (yellow) and 

cluster 4  (green), thus avoiding the cluster 3 (blue) activated just before. 

The few weeks of delay between these activations might either reflect the time scale for build-up of stress 

redistribution from one primary structure to the next activated one, finally reaching its failure strength (for instance 

elastic stress build up due to the slow slip on a fault segment), or/and the time scale for decreasing the strength of 

the target structure (for instance through pore pressure diffusion and increase). 
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As going into further detailed analysis of clusters activity is outside of the scope of this paper, evaluation of our 

hypothesis resulting from this study and answering newly raised questions of triggering mechanism of seismicity 

during the dry season will be addressed in ongoing and future research. 

The influence of the station configuration changes on this observation of migration of strongest seismic activity 

was analysed (details in Appendix A4), with the conclusion that it does not have any effect.  

Seismic activity seems to be rather controlled by hydrological conditions in the mine works as well.  

The flooding front position, indicating water levels in mine works, is influenced by seasonal aquifer level changes 

and controlled by pumping. Clusters in the northwest part are more active when pumping rate increased (period 

indicated in Figure 18), which consequently lowered the water level in the mine works.  

Focusing on the temporal distribution of each active cluster separately (Figure 18), we see that most of the clusters 

have a repetitive nature, remaining active over a much longer period than the seismic crises itself, with events 

through the entire observed period of four years, which is in agreement with the repetitive nature of previously 

observed multiplet families (Namjesnik et al. 2019). This suggests that the source of seismicity originates from 

the repeated rupture of faults (or faults segments), rather than from ground instabilities caused by a failure initiated 

at the mine level. Progressive mine collapsing, which is often characterized as “the domino effect”, is 

characterized as spatially progressive and non-repetitive, in contradiction with what we observe here. 

Furthermore, the observed values of magnitude appear rather strong for a collapse of a mine of 2 m height.  

4.2. Outlook 

The exact mechanism behind the apparent coupling of seismicity and water level changes, in particular 

(un)loading effects of the water columns, pore-pressure changes, stress redistribution from (a)seismic faulting in 

the mine, remain beyond the scope of the present study. It will be addressed by a recently started analysis, based 

on an improved seismic network. This will allow for source mechanism analysis and source depth information 

extraction as well as better understanding of water circulation in the mine based on installation of further 

piezometers in the later stages. 

As the monitoring network in the study area has been enhanced since 2018 and 2019, now comprising total of 

thirteen instruments, in the future study we will exploit the newly recorded data of 2019 to better constrain seismic 

source mechanisms and source depths of identified faults segments. To evaluate the hypothesis of connection to 

the hydrogeological system, we will exploit the newly enhanced hydrogeological monitoring data covering the 

same period, as two new piezometers were installed in pre-existing wells in summer of 2018. The hypothesis of 
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physical mechanisms for seismicity triggering due to water level changes in mining works will be evaluated with 

simple geomechanical modelling.  

More detailed analysis of the seismic activity within each fault segment will focus on exploiting the previous 

discovery of a large number of multiplet families (Namjesnik et al. 2019), located within the same clusters that 

were identified in this study. The precise spatial dimension of each cluster (fault segment), and the identification 

of whether they represent separate faults or one continuous fault segment rupturing during longer period, as well 

as whether a large dynamic rupture is possible or rather slow creep with breaking of asperities, will allow us to 

estimate the potential highest magnitude of future events and to assess the potential hazard in the observed area. 

 

5. CONCLUSION  

In this paper we presented a first successful adaptation of the automatic waveform-based BTBB method to post-

mining setting of the Gardanne mine, monitored with sparse seismic network. As the direct application of BTBB 

to data with limited number of stations was challenging, we developed a novel methodology that bypasses these 

limitations making use of two noise removal criteria.  

Furthermore, we designed an event classification system based on the evaluation of location quality, which 

demonstrated a satisfactory performance and enabled us to observe and classify the clustering of highest quality 

(A class) events.  

We show preliminary interpretations of spatio-temporal cluster analysis and correlation with hydrogeological 

data, which indicate that seismic activity in Gardanne mine is controlled by hydrological conditions in mine works 

which acts as an anthropogenic aquifer, influenced by rainfall and pumping. The interpretation of the results 

indicates that the origin of seismic activity is on fault segments, rather than due to mining works collapse, which 

is in agreement with prior hypothesis (Kinscher 2017). 

In conclusion, the methodology presented here offers a solution for automatizing detection and location in 

operational microseismic monitoring, especially, but not limited, to post-mining settings, where sparse temporary 

monitoring networks with one-component geophones are very often the only available tool for hazard assessment, 

and where timely decisions based on accurate seismic event locations are of most importance. 

 



36 
 

APPENDIX 

A1 Attenuation relationship  

We calibrate expression [3] assuming 𝑛 =  2, the typical geometrical spreading coefficient used to describe body 

wave propagation. This choice presents a good approximative fit for observed values as evidently shown in Figure 

20, where testing dataset of 215 catalogued events of December 2014 was used. We observe also that the 

frequency range does not affect significantly the values of logarithms of amplitude ratios of each event plotted 

versus logarithms of ratios of their inverse source-station distances, indication that the frequency dependent terms 

from attenuation law could be omitted. 

We expect the effect of the mine layer to be relatively small since the analysed wavelength (V/(4*f)) (for 

amplitudes in the frequency range of 1-100 Hz) are generally larger than the thickness of the mine layer. 

Nonetheless, scattering effects are clearly expected to be present and have an influence on the recorded 

amplitudes, which however is below the uncertainty of ±1 for estimated amplitude ratios used here. However, for 

the purpose of calculating amplitude ratios in frequency range of 1-100 Hz, based on observations, we consider 

only the loss of seismic wave energy due to the geometric spreading. 

 

Figure 20 Logarithm of amplitude ratios without frequency dependent terms, shown in three different frequency 

ranges. Grey area corresponds to intercept of ±1. 
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 A2 Local magnitude, seismic moment and moment magnitude determination 

To complete the information in the new catalogue, a local magnitude was determined for each detected event as 

well, as a product of the absolute amplitude of an event in frequency range 1-20 Hz, taking into account all events 

listed in the new catalogue, and source-station distance 𝑟 averaged over number of the available stations.  

To calculate the source-station distance, the BTBB location is taken for events successfully relocated in part 2, 

otherwise it is taken as the amplitude ratio-based location of part 1 of the analysis. The local magnitude is 

expressed as follows:  

 

𝑀𝐿 = log10(𝑚𝑒𝑎𝑛 [(𝑚𝑎𝑥|𝐴| × 𝑟]), [7] 

 

and the determined values are in range -1.38 to 1.7.  

The relationship between moment magnitude Mw and local magnitude ML for the study region was investigated 

and estimated empirically based on data of 48 events of December 2014 for which values of Mw were available 

from a precedent study and ML determined in this study based on equation [7]:  

  

𝑀𝑤 = 0.68 × 𝑀𝐿 + 0.57 [8] 

 

This expression was further applied to calculate the moment magnitude for all detected events. The seismic 

moment 𝑀0 was determined based on the relation (Hanks & Kanamori 1979): 

 

𝑀𝑤 =  
2

3
log 𝑀0 − 6.1 

[9] 

 

A3 K-means clustering 

In order to avoid subjectivity due to the difficulty of accurately assigning events to clusters “by eye”, due to 

absence of other information on seismic source such as focal mechanism, faults locations etc., we apply the K-

means clustering approach (Hartigan 1975, Hartigan & Wong 1979).  

K-means is a clustering algorithm with Euclidean square distance metric, with hard partitioning algorithm based 

on a central point (centroid) where each event is allocated to only one particular cluster, in an iterative process 

where the data are initially randomly partitioned, the mean position of each group calculated, and then the data 

partitioned again by allocating each event to its nearest mean cluster position (Weatherill & Burton 2009). K-
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means has been most widely used for cluster analysis in data mining and analysis field as an unsupervised machine 

learning technique, but has several recent applications on earthquake data as well (Weatherill & Burton 2009, 

Rehman et al. 2014, Novianti et al. 2017). The best K value (which corresponds to the number of centroids and 

number of clusters) in correspondence to our observation in Figure 16 was estimated as 6 by the Elbow method 

as shown in Figure 21. 

 

 

Figure 21 Elbow method used to determine optimal number of clusters (k). 

A4 Influence of station configuration changes on the location of events and apparent migration of 

seismicity 

Monitoring network configuration could potentially have biasing effect in locating event. Due to station changes 

in time during observed period (timeline of changes shown in Figure 1) it is necessary to examine its influence on 

apparent spatio-temporal migration of seismicity between two seismic crises (Figure 22).  

As it is not possible to conduct test by determining location of one event in the different configuration settings, 

we examine the influence of station configuration change on event locations by focusing on seismic clouds 

locations of A class events during three periods of seismic crises, in between which the station configuration had 

changes in settings. 

First, we focus on a seismic crisis which lasted from late 2016 until March 2017. Within this period, the station 

configuration had a major change prior to the seismic activity in March, as station S4 was removed and two new 

stations (S6 and S7) where installed. Therefore, we separately observe the seismic cloud locations during one 

configuration setting (November 2016 – February 2017) and during a new configuration (March 2017). As we 

can observe on Figure 21, the location of the events during the entire crisis period does not change albeit the 



39 
 

station configuration changes, there is no migration of seismicity. Hence, we conclude that this configuration 

change did not have any effect on determining of location of seismic events.  

However, a migration is noticeable between the crisis of December 2014 and the crisis of November 2016-March 

2017. To analyse the influence of the station configuration on this migration, we observe that the configuration of 

the crisis of December 2014 has almost the same station configuration as the first part of the observed crisis of 

November 2016 - February 2017, as the only change is the station transfer from S2 to S5 location.  

Based on these observations, we conclude that station configuration changes do not have any meaningful influence 

on the location of events of class A and that migration of seismic cloud between two crises is not an artefact due 

to the change of station configuration. 

 

Figure 22 Station configuration change during periods of three seismic crises and its influence on spatio-temporal 

migration of seismic cloud in active area. Colors of seismic events, seismic stations and seismic cloud boundaries 

are corresponding to colors of observed periods shown in label. Monitoring stations are marked with name of 

stations and slightly bigger circles than seismic events, colored with 1 to 3 colors indicating their active period(s). 

Seismic clouds area are bounded with rectangle corresponding to its approximate area. 
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Supplementary figures 

 

Figure 1 Detailed STEP 1 of Scheme of detection and location methodology (Figure 6 in manuscript) developed in 

this study. Threshold of STA/LTA as well as threshold for mean MAA and mean RMS are determined for each 

frequency band, based on their values of events in catalogue during period of one month. Please see manuscript for 

details. 



 

Figure 2 Detailed STEP 2 – amplitude ratio based location,  of Scheme of detection and location methodology (Figure 

6 in manuscript) developed in this study. Threshold P(l) is determined based on the values of events in catalogue 

during period of one month. Please see manuscript for details. 



 

 

Figure 3 Detailed STEP 2 – BTBB based relocation,  of Scheme of detection and location methodology (Figure 6 in 

manuscript) developed in this study. Please see manuscript and Poiata et all (2016) for details. 
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