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A B S T R A C T

In Nantes, low-cost sensors were installed in the city center and deployed on driving school cars, ambulances and
service vehicles to measure PM10 concentrations. This work aims to use the large amount of observations pro-
vided by the sensors for air quality mapping at the urban scale in order to show the potential added-value with
respect to the dispersion model (ADMS-Urban) calculations. A preprocessing is applied to the raw sensor dataset
to remove the unreliable observations based on an outlier detection technique and to compensate for the
measurement drift by adjusting the estimated daily variation of the underlying background PM 10 concentrations
with the reference stations. Then, data fusion is performed by combining the preprocessed � xed and mobile low-
cost sensor observations and the 2016 annual average of the ADMS-Urban outputs. The measurement un-
certainty related to the low-cost sensors and the dispersion of the data are considered in data fusion as the
Variance of Measurement Error (VME). The spatial interpolation is achieved at hourly resolution and results are
presented for November 29th, 2018 from 7 am to 7 pm. Hourly fused maps show disparate responses to data
fusion mainly depending on the variability of the sensor data and the correlation between the sensor observa-
tions and the drift. The data fusion performance has been investigated by comparing the daily average of the
estimated concentrations, the reference observations and the hourly model outputs at each station of the Air Pays
de la Loire network. Results show that considering the model alone implies 8% bias whereas including the LCS
observations reduces the bias to 2.5%. However, the concentration distributions related to the data fusion are
characterized by a lower dispersion than the reference observations and the model estimation. Thus, the fusion
smooths the PM10 peaks. In addition, the e� ect of the measurement uncertainty has been investigated by
doubling it or reducing it to the reference station measurement uncertainty. The sensitivity study demonstrates
that the performance is increasing by reducing the uncertainty. This highlights the importance to estimate ac-
curately the measurement uncertainty of the devices to ensure relevant air quality mapping. The method e�-
ciency is also quite limited by the low correlation between the sensor observations and the model used as
external drift in the kriging that may be explained by the remaining bias on LCS data. E � orts on this issue might
increase the performance of the spatial interpolation.

1. Introduction

The impact of outdoor air pollution on human health is over-
whelming according to recent studies (Cohen et al., 2017, Burnett et al.,
2018, 2014). The World Health Organization pointed out that 4.2
million deaths in the world are caused by the ambient air pollution
(World Health Organization, 2014). For at-risk population, the parti-
culate matter (PM), Ozone (O3) and Nitrogen dioxide (NO 2) are known
to exacerbate diseases (Sack and Goss, 2015; Landrigan et al., 2017).
There is evidence that PM10 (particulate matter with a diameter of less
than 10 µm) has a short-term exposure e� ect on respiratory health and
it has been shown that PM2.5 (particulate matter with a diameter of less

than 2.5 µm) is responsible for a high mortality rate in the 250 most
populous cities worldwide ( Anenberg et al., 2019). PM can be emitted
directly or formed by chemical reactions in the atmosphere because of
anthropogenic emissions (tra� c, agriculture, or residential sources). To
reduce its impact, it is necessary to mitigate its emissions and control its
concentrations in the ambient air.

To meet this need, regulatory air quality monitoring has been es-
tablished (see for instance the Air Quality in Europe report, European
Environment Agency, 2019). Air quality monitoring is conventionally
based on a network of stations allowing a continuous report of the
pollutant concentrations at local and regional scales. Stations provide
observations of the regulated pollutants (mainly NO 2, SO2, O3, PM10,
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PM2.5, benzene, PAHs and heavy metals). Their measurement un-
certainty is constrained by the European legislation ( directive 2008 /
50/CE and 2004/107/CE) ensuring observation accuracy. They also
must ful � ll a criterion of time coverage depending on the pollutant and
the type of measurement (� xed, indicative). Stations are classi� ed de-
pending on the nearby predominant emission sources (tra� c, industrial
and background stations). In addition to in situ observations, air quality
modelling is used to estimate pollution especially at locations where
there is no measurement station. Indeed, Chemistry Transport Models
(CTM) and Gaussian or Lagrangian dispersion models are used at re-
gional and local scales, respectively, for the calculation of the behavior
of the pollutants in the atmosphere. The combination of in situ mea-
surements and model calculations allow more accurate air quality
mapping and forecasting of the pollutant concentrations as performed
by the French national forecasting system PREV’AIR (Rouil et al., 2009;
Malherbe and Ung, 2009; Beauchamp et al., 2016). However, the high
cost associated with the setting-up and operation of a station network
makes it necessary to limit the number of stations that can be installed
and maintained in a given region. This is a signi � cant limitation to
improve the forecasting system.

In the last decade, the technological progress has opened ways to
overcome this constraint by the development of miniaturized and low-
cost sensors (hereafter LCS) to measure pollutant concentrations
(Kumar et al., 2015). Many projects of crowdsourcing and citizen sci-
ence are coming up. In Europe, fablabs are created to bring together
citizens for a common purpose to measure pollution in their environ-
ment (AirCitizen, http://aircitizen.org/ , Mobicit ’Air, http://www.
mobicitair.fr/ , Ambassad’Air, http://www.wiki-rennes.fr/
Ambassad'Air, Luftdaten, https://luftdaten.info/ ). In addition, mea-
surement campaigns are conducted to assess the potential of these de-
vices by installing � xed sensors (on top of buildings, on street lights, or
on reference stations) and/or mobile sensors (on top of cars, bikes, or
carried by citizens) o� ering higher spatial coverage than reference
stations.

The large amount of collected information o � ers new opportunities
of developments in air quality modelling and mapping at urban scale
that are the scope of recent studies. Because low-cost sensors su� er
from metrological weaknesses, a calibration is � rst generally applied to
the raw data. Especially, linear/multilinear regression and supervised
learning techniques have been developed to correct sensor measure-
ments (Spinelle et al., 2015, 2017, Maag et al., 2015). Once calibrated,
LCS data are then used for air quality mapping. Statistical methodolo-
gies are broadly applied to include mobile sensor observations to pro-
duce maps of pollutants. The Land Use Regression models (LUR) have
been applied in many works (Jerrett et al., 2005; Ryan et al., 2007;
Hoek et al., 2008; Minet et al., 2018; Xie et al., 2017 ). These approaches
consider the in� uence of the land use and the environmental features of
the surrounding area to estimate the pollution. This is based on the
construction of a multiple linear regression with explanatory variables
(population density, distance from the road, altitude etc.). Recently,
Hankey et al., 2015, provided an estimate of PM2.5 concentrations in
Minneapolis (USA) by testing 1224 di � erent LUR using mobile mea-
surements. Their results show that the LUR performance is dependent
on the choice of the variables and most importantly on the amount of
data and the frequency of the measurements. Although the results are
convincing, the main limitation of the LUR methods remains the ex-
clusion of the spatial dependence of the residuals. Other methods, such
as machine learning techniques (Support Vector Regression, Decision
Tree Regression, Random Forest Regression or Extreme Gradient
Boosting) are used for mapping (Muller et al., 2016; Hu et al., 2017 ).
Their results demonstrate below-average performance and highlight the
necessity to include meteorological parameters in the estimation.
Moreover, geostatistical approaches have been applied based on low-
cost sensor data.Alvear et al., 2016, estimated an ozone map in Va-
lencia (Spain) by using ordinary kriging with mobile sensor observa-
tions. The estimation shows large spots of high and low concentrations

of ozone, so the map accuracy could be improved. A more sophisticated
geostatistical approach was used bySchneider et al., 2017 to estimate
NO2 concentrations in Oslo (Norway). They applied external drift kri-
ging (also called data fusion) that allows to combine � xed sensor ob-
servations and dispersion model calculations to estimate the pollutant
levels at the urban scale. Data fusion is of great interest compared to
other approaches. Unlike exclusively statistical techniques, external
drift kriging allows to consider the spatial variability of the process to
be interpolated. Although it does not account for discontinuities in
spatial correlations due to street canyon e� ects at the local scale, it
o� ers a straight forward implementation because the dispersion model
outputs are used without any change in the model formulation. By
applying this approach, Schneider et al. found that data fusion can
produce realistic hourly concentration � elds of NO2 and the perfor-
mance of the approach is dependent on the number of observations,
their spatial distribution, the uncertainty of the measurements and the
model capability to reproduce urban air quality patterns. They provided
the � rst data fusion results using low-cost sensor data. However, they
did not consider the sensor measurement uncertainty in their estima-
tion and they did not include mobile sensor measurements.

In this paper, data fusion is performed in Nantes (France) using
� xed and mobile low-cost sensor observations of PM10. The feasibility
and the potential added-value with respect to the dispersion model
(ADMS-Urban) calculations of using � xed and mobile low-cost sensor
observations for air quality mapping via an external drift kriging ap-
proach is investigated. The observations that are used in the data fusion
are presented in Section 2, the preprocessing which is applied to the
raw dataset of the LCS measurements is detailed inSection 3, the data
fusion technique is described in Section 4, the results are presented and
discussed inSection 5, followed by the conclusions.

2. Observations

AtmoTrack (https://atmotrack.fr ), a French company created in
2015 in Nantes, provided the sensor data. AtmoTrack participated in
the Airlab 2018 challenge ( http://www.airlab.solutions/en/discover ).
They showed that AtmoTrack sensors that measured PM are satisfactory
compared to other existing sensor systems (Airlab, 2018) by assigning a
rating for their accuracy of 7/10 based on the Sensor Evaluation
Toolbox (SET,Fishbain et al.,2017). They also obtained a patent for the
mobile sensor design (https://bases-brevets.inpi.fr/fr/document/
FR3073942.html?s=1590659615382&p=5&cHash=
7a962d67878558c00956ee2f102afbcb) and they demonstrated that up
to 50 km/h the sensor motion does not a � ect the measurement. Further,
beyond 80 km/h the data is no longer considered. AtmoTrack has de-
ployed � xed and mobile low-cost sensors that provide PM10 and PM2.5

concentrations in urban areas to build a database for a better estimation
of outdoor air quality.

This work focused on the estimation of the PM10 concentrations
using the AtmoTrack low-cost sensor observations in Nantes in
November 2018. The reference station measurements (Fig. 1a) were
provided by Air Pays de La Loire (hereafter AirPDL, http://www.airpl.
org/ ) with a 15-min time resolution. Note that the station measure-
ments are not used in the spatial interpolation but only in the sensor
data preprocessing as presented in section 3. During the sampling
period, AtmoTrack deployed 16 � xed sensors (Fig. 1b) including 3 re-
plicates at Victor Hugo station (station under the tra � c in� uence) and
3 other replicates at La Bouteillerie station (station under urban back-
ground in � uence). Most of the � xed sensors are in the city center ex-
cepted the sensor with the ID 10, which is in the west part of the city. In
addition, 19 mobile sensors were on-board of driving school cars, am-
bulances and service vehicles to measure PM10 concentrations over
numerous routes each day of the sampling period. The routes are pre-
sented for each sensor inFig. 1c. The vehicle routes ensure a unique
spatial coverage over the urban area although they rely on their itin-
eraries and on their drive time (mainly daytime). Fig. 1d shows that the
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locations with the largest number of observations are mainly in the
center and the north west part of the city.

The reference station measurements, the raw� xed and mobile LCS
observations have been compared over the sampling period. The� xed
sensor observations were aggregated in time (15 min average) to match
the time resolution of the reference measurements. The comparisons of
the two datasets at Victor Hugo (Fig. 2a) and La Bouteillerie (Fig. 2b)
show that the � xed sensor distribution of PM10 concentrations is
characterized by two modes whereas there is only one mode in the
reference observations. The� rst mode is between 0 and 10 µg/m3 and
might be explained by a poor detection of ultra- � ne particles by the
devices. The second mode, between 30 and 40 µg/m3, corresponds most
likely to the real concentrations of PM 10 with a shift toward higher
values. This might be due to a granulometry e� ect related to the
measurement technique. These hypotheses should be investigated in a
speci� c work and they are not the scope of this study. Fig. 2c shows the
distributions of the � xed and mobile sensor PM10 observations with the
initial time resolution (10 s) and the reference observation distribution.
As expected, the distributions of mobile and � xed sensor observations
are consistent because of the two similar modes unlike reference sta-
tions. In addition, the density of the sampling time ( Fig. 2d) is com-
parable between the � xed LCS and the reference stations. That de-
monstrates the smooth operation of the devices. Mobile sensors are
showing gaps in the sampling time. The maximum density of mea-
surements is observed at the end of the sampling period. In addition,
there is a decrease in the number of measurements at the end of each
week. There are fewer observations from mobile sensors during week-
ends and especially on Sundays because sensors are installed on service

vehicles and driving-school cars.
To assess the consistency over time of the PM10 observations, the

average of the 3 � xed LCS replicate observations have been aggregated
to a 15-min time resolution and compared to the reference measure-
ments at Victor Hugo (Fig. 3a) and at La Bouteillerie (Fig. 3b) stations.
For the entire sampling period, the average of the LCS observations are
consistent with the reference station observations. However, LCS
overestimate the PM10 concentrations (up to 30 µg/m 3 between No-
vember 15th and November 23rd at both stations). Some small varia-
tions (up to 20 µg/m 3 between November 8th and November 13th)
recorded by the stations are not seen by the� xed devices. These mea-
surement di� erences could be explained by the e� ect of the detection
limit of the instruments. Also, a high pollution event is recorded at
Victor Hugo on November 27th that is not seen by the LCS replicates. A
device malfunction or the positioning of the sensors relative to the
station could be an explanation for this failure. In fact, the impact of the
instrument features on the measurements should be further investigated
in a dedicated study and this is not the scope of this paper. In addition,
sporadic pollution events are only measured by the LCS (November
15th at Victor Hugo). As there is no reason for the reference station not
to record the right pollutant levels it seems that these events could be
associated to malfunction of the devices. The correlation coe� cient
between the reference measurements and the LCS (Fig. 3, right panels)
is satisfactory for both stations. However, the correlation is higher at La
Bouteillerie (R = 0.85) than at Victor Hugo (R = 0.62). The very local
emissions of PM10 (due to tra� c and other human activities) at Victor
Hugo could be an additional complication for sensor measurements.

To reduce as much as possible the bias related to the low-cost sensor

Fig. 1. The reference monitoring stations (Air Pays de la Loire network) (a), the � xed LCS positions (b), the sampling routes of the mobile LCS (c) and the heatmap of
the � xed and mobile LCS observations (d), are given for November 2018 in Nantes.
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measurements to be used in the mapping approach, a preprocessing on
LCS data has been applied as discussed in section 3.

3. Preprocessing

AtmoTrack sensors were placed next to the Air Pays de la Loire
reference stations to be pre-calibrated before being installed on ve-
hicles. No adjustment was made after the sensors were deployed. The
preprocessing of the LCS raw dataset proposed in this work consists of
two steps. The � rst step is the elimination of unreliable data based on
the repeatability criterion. The second step is the correction of the daily
variation of the background concentrations.

The concentration threshold based on the repeatability criterion is
calculated according to Spinelle et al. (2013). Their approach is based
on laboratory tests for gaseous pollutants, however because there is no
reference that de� nes the repeatability for PM ambient air measure-
ment, this method was adapted.

LCS observations which are below this threshold are then removed
from the dataset. Especially, a period without pollution (very low PM 10

concentrations for a period of 30 min at least) is identi � ed from the

reference station observations (Victor Hugo station). Then, the LCS
(� xed sensors installed at the station) observations corresponding to
this period are selected. From this selection of data, the standard de-
viation is derived as described by Eq. (1).

=
� �

�
=S

x x

N

( ¯)

1
x

i
N

i1
2

(1)

With xi the individual measurement, x̄ the mean response of the
sensor, and N the number of measurements. Then, the repeatability
threshold (Rp) is calculated such as presented in Eq.(2).

=Rp S2 2 x (2)

PM10 and PM2.5 concentrations from LCS measurements are closely
related. AtmoTrack estimates the PM2.5 concentrations from the raw
measurement then PM10 concentrations are calculated on the PM2.5

basis as it is detailed in the supplementary material document as S1.
Therefore, we consider both PM categories for this � rst step of the
preprocessing. Rp is 4 µg/m3 for PM10 and 2 µg/m 3 for PM2.5. Both
thresholds are applied to the dataset. Note that the repeatability

Fig. 2. The entire dataset in November 2018 in Nantes is presented as: the distributions of the co-located observations at Victor Hugo of the reference (in grey) and
the � xed LCS (in blue) at 15-min time resolution are in panel (a), the distributions of the co-located observations at La Bouteillerie of the reference (in grey) and the
� xed LCS (in blue) at 15-min time resolution are in panel (b), the distribution of all observations of the reference stations at 15-min time resolution (in grey), the � xed
(in blue) and mobile (in orange) LCS at 10 s time resolution are in panel (c), and the density of the sampling time of the stations, and � xed and mobile LCS are in
panel (d).
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criterion is calculated using the � xed LCS data because the comparison
with the reference station is necessary. The repeatability threshold
based on� xed data is then applied to the mobile observations. Indeed,
because of the spatial and temporal representativity issues illustrated by
Figs. 1d and 2d, the repeatability can ’t be estimated using mobile ob-
servations. This could imply a bias on the mobile data � ltering. Con-
sidering PM2.5 and PM10 for the entire dataset, we obtained a 6.5%
removal of mobile LCS data and a 14% removal of � xed LCS data. PM
concentrations measured on road by mobile LCS are higher in average
than those measured by � xed LCS installed close to the stations.
Therefore, less data with low PM concentration values is eliminated
from the dataset from mobile LCS data.

Once the thresholding step is complete, the correction of the daily
variation of the background (Hankey et al., 2015) is applied. The cor-
rected concentration is determined from Eq. (3).

= � �C C Bg Bg( )r i LCS stations (3)

With Cr the corrected concentration value, Ci the initial concentra-
tion value, BgLCS is the background calculated from all the LCS mea-
surements and Bgstations the background calculated from all reference
stations. BgLCS corresponds to the median value in a moving-window of
15 min on a continuous run of mobile measurements. A continuous run
is de� ned as the measurements from a mobile sensor without inter-
ruption of measurements greater than 5 min. Bgstations is the daily
average of the reference station measurements.

The PM10 observation distribution of the � xed and mobile LCS es-
timated by the preprocessing are presented in Fig. 4.

As presented in Fig. 2, the preprocessed� xed sensor observations
have been aggregated in time to match the time resolution of the re-
ference measurements, i.e. 15 min (Fig. 4). The comparisons of the

datasets at Victor Hugo (Fig. 4a) and La Bouteillerie (Fig. 4b) show that
the two modes that characterize the distributions of the � xed LCS raw
data are not present after the preprocessing. Thus, the� xed LCS and
reference observation distributions are more comparable. Fig. 4c shows
the distributions of the preprocessed � xed and mobile LCS observations
with the initial time resolution (10 s) and the reference observation
distribution from all stations. The three distributions show similar mean
and dispersion implying a consistency over the estimation domain of
the pollutant measurements for the 3 networks. Because of the elim-
ination of observations from the raw dataset, the sampling time density
(Fig. 4d) of the preprocessed LCS observations has been decreased
especially for the � xed sensors.

To assess the accuracy of the preprocessed dataset, the hourly
average of the raw and preprocessed PM10 observations from mobile
and � xed LCS are compared to the ADMS-Urban dispersion model
calculations from 7 am to 7 pm in November 2018. ADMS-Urban is a
modeling platform which is developed by the Cambridge
Environmental Research Consultant (CERC;Carruthers et al., 1997). It
includes several models for the calculation of the pollutant concentra-
tions at the urban scale. It allows to perform calculation from the local
scale to the city scale and this is a reference system for the assessment of
the population exposure to air pollution sources. AirPDL uses ADMS-
Urban for their forecasts of pollutant concentrations at the urban scale
and they provided the simulation results. The use of ADMS-Urban is
supported by a continuous validation ( https://www.cerc.co.uk/
environmental-software/model-validation.html ) and comparison stu-
dies (Malherbe et al., 2010; Tognet et al., 2015, 2016). The model al-
lows a Gaussian dispersion of the pollutants and includes a street
canyon formulation. ADMS-Urban outputs which are used in this study
are from an automated forecasting system that runs daily for the

Fig. 3. Timeseries of the PM10 observations in µg/m 3 (left panels) from the average of 3 � xed LCS (in blue) and the reference station (in grey) at Victor Hugo (upper
panel) and La Bouteillerie (bottom panel), and the corresponding correlation plots (right panels).

A. Gressent, et al. �(�Q�Y�L�U�R�Q�P�H�Q�W���,�Q�W�H�U�Q�D�W�L�R�Q�D�O������������������������������������

��



previous and next few days. The background pollution is calculated on
average over a set of grid points of a large-scale model (ESMERALDA,
http://www.esmeralda-web.fr/ , or PREV’AIR, http://www2.prevair.
org/ ) and it is validated daily by AirPDL. Hourly model outputs are
considered as the true state and give information at locations without
measurement from the reference station network. To make the com-
parison, at each measurement position, all measurements occurring
during an hour are averaged. Then, the nearest model grid point to the
observation position is selected to be compared. Note that model grid
points are clustered over the main highways (6 m spatial resolution)
and far from the roads the grid becomes regular (250 m spatial re-
solution). The analysis of the hourly average shows that raw data
overestimate by up to 4 µg/m 3 at 10 am (underestimate by up to8.5 µg/
m3 at 5 pm) the model before (after) 11 am. The preprocessing allows to
reduce the di� erence (decrease of up to 5.5 µg/m3 at 5 pm) with the
model calculations (Fig. 5a). In addition, the PM 10 concentration dis-
tributions of the preprocessed LCS data are more in agreement with the
model output distributions unlike the raw LCS data ( Fig. 5b).

These results demonstrate the relevance of applying a preprocessing
on LCS raw data. We are then more con� dent in using sensor ob-
servations for air quality mapping. The approach used in this work to
estimate the PM10 concentrations in Nantes is the data fusion. This is
described in the following section.

4. Data fusion: method

Data fusion allows to combine di � erent sources of information also
called auxiliary variables to estimate a map of pollutant concentrations.
This is based on universal kriging, a geostatistical method. Kriging is an
approach broadly used for air quality mapping at the regional and
urban scale (Liu et al., 1996, Ferreira et. al; 2000; Jerret et al., 2001
Künzli et al., 2005; Malherbe et al., 2005; Beauchamp et al., 2010,
2014, 2017, 2018; Xie et al., 2017). Kriging aims to estimate the value
of a random variable (random process which describes the observa-
tions) at locations of a spatial � eld, based on the measurements. The
main concept of kriging is that the measuring points that are close to

Fig. 4. The entire dataset in November 2018 in Nantes is presented as: the distributions of the co-located observations at Victor Hugo of the reference (in grey) and
the � xed LCS (in blue) at 15-min time resolution are in panel (a), the distributions of the co-located observations at La Bouteillerie of the reference (in grey) and the
� xed LCS (in blue) at 15-min time resolution are in panel (b), the distribution of all observations of the reference stations at 15-min time resolution (in grey), the � xed
(in blue) and mobile (in orange) LCS at 10 s time resolution are in panel (c), and the density of the sampling time of the stations and � xed and mobile LCS are in panel
(d).
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the estimation point should have a higher weight in the estimation than
the distant measuring points. This is based on a good knowledge of the
spatial structure of the domain which is represented by the variogram
or co-variogram (second order properties) of a random function
(Goovaerts, 1997; Wackernagel, 2003; Chiles and Del� ner, 2012;
Lichternstern, 2013). Kriging involves deriving linear combination of
the data which ensures the minimal estimation variance under a non-
bias condition. At a point s 0, the concentration estimate �ny s( )0 is given
by Eq. (4).

�n �=
=

y s � y s( ) ( )
i

N

i i0
1 (4)

Where y s( )i , i = 1 …N, are the observed concentrations at sampling
locations through the entire domain (unique neighborhood) or within a
limited neighborhood of s0 (moving neighborhood), and � i , i = 1 …N,
are the kriging weights.

The variogram allows to derive the variance of the estimation error
(kriging variance) which gives the location where the error is relatively
high or low. The strength of the kriging approach is to give an in-
formation on the error and on the uncertainty of the estimated map.
Among the kriging methods, the universal kriging allows to consider
additional information to make estimate more accurate. Universal kri-
ging, more speci� cally external drift kriging, is based on a linear re-
gression with auxiliary variables and a spatial correlation of the re-
siduals and allows to combine simultaneously observations and
additional information. Hereafter, this kriging approach is called data
fusion. The main hypothesis is that the global mean is not constant
through the domain and it relies on explanatory variables. This kriging
technique has been used for several years in the monitoring air quality
system for spatial interpolation at urban scale ( Beauchamp et al., 2016)
and at the regional scale (PREV’AIR, Malherbe and Ung, 2009). The
novelty in this work is the use of � xed and mobile low-cost sensor data
to perform data fusion.

For y s( )0 , which is the pollutant concentration to be estimated at a
location s0, the hypothesis is a linear relation between y s( )0 and the
considered auxiliary variables as explained by equation (5) and (6) .

= +y s m s � s( ) ( ) ( )0 0 0 (5)

= + + + �+m s b b x s b x s b x s( ) ( ) ( ) ( )p p0 0 1 1 0 2 2 0 0 (6)

Wherem s( )0 is the drift of the mean, �b b b, , , ,p0 1 are the coe� cients

of the linear regression, and �x x x, , , ,p0 1 are the auxiliary variables. �
corresponds to the stationary random process which is associated with a
semi-variogram. In addition, the kriging weights must satisfy the drift
condition described in Eq. (7).

�� =
=

x x s � x s: ( ) ( )p p
i

N

i p i0
1 (7)

In this work, the spatial drift of the mean is described by the 2016
annual average concentrations of the pollutant simulated by the ADMS-
Urban dispersion model provided by AirPDL ( Fig. 6). The modeled
annual average is representative of the main patterns of the pollutant
concentrations and it was interpolated over the modelling domain by
AirPDL. The hourly model outputs for November 2018 were provided at
grid points. We assessed the feasibility to use them as external drift in
kriging. We interpolated the hourly outputs and calculated the corre-
lation with sensor observations. Results did not show better correlation
than using the annual average. Thus, to avoid additional bias by in-
terpolating ADMS-Urban hourly outputs, we de � ned the annual average
as the drift. This variable is displayed in Fig. 6 for the estimation

Fig. 5. The hourly comparison of the raw data (in red), the corrected data (in green), and the model (ADMS-Urban, in grey) has been performed in November 2018 as
shown by the timeseries (a) and the density plots (b). In panel (a), the shaded areas correspond to the variability in the vicinity of the model point, i.e., the
mean ± the standard deviation.

Fig. 6. The annual average of PM10 concentrations (in µg/m 3) for the year 2016
calculated by ADMS-Urban (provided by Air Pays de la Loire) in Nantes and
used as the drift in the kriging approach.
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domain which corresponds to Nantes and its surroundings.
To consider the measurement uncertainty and the variability of the

LCS data in the kriging, the variance of measurement errors (hereafter
VME) is de� ned as an input of the calculation (the VME of each sample
data is added to the corresponding diagonal term of the covariance
matrix before solving the kriging system). Especially, the VME is the
combination of i) the dispersion of the pollutant concentrations ob-
served at a position over the estimation period (an hour in this work),
versus the number of observations at this position and ii) the mea-
surement uncertainty ( Macé et al., 2010). The VME calculation is given
in Eq. (8).
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(8)

Where � is the standard deviation of the pollutant observations at
the position i, N is the number of observations at the position i, � r is the
constant relative type uncertainty (which depends on the type of
sensor), andCj is the jth pollutant concentration at the position i.

The accurate estimation of the measurement uncertainty is chal-
lenging. In this study, a relative uncertainty is considered based on the
de� nition of the 3 networks of measurements. These networks, i.e. the
reference stations, the � xed and the mobile LCS, are characterized by
the number of observation locations, their measurement accuracy and
the mobility. The � rst network, which consists of the reference stations,
is very sparse but the quality of the observations is high with a max-
imum uncertainty of 25% meeting the requirements of the European
directive ( directive 2008 /50/CE and 2004/107/CE). The second net-
work, which corresponds to the � xed sensors, allows to add many
measurement locations but with higher uncertainty. The third network,
which corresponds to the mobile sensors, o� ers an unequaled high
spatial coverage but implies issues of measurement (mainly spatial and
temporal representativeness, and heterogeneity of the data) and a high
uncertainty. In this study, the uncertainty de� nition relies on the LCS
observations analysis and the European directives requirements. In the
following, a maximum of 50% of uncertainty is considered for the � xed
LCS and 75% for the mobile LCS. After all, the VME allows to allocate
more weight to the data points characterized by low uncertainty and
variability in the estimation of PM 10 concentrations.

Note that kriging is performed by way of a R computing language
code that uses the RGeostats package (a package for geostatistical ap-
plications, MINES ParisTech / ARMINES (2019), RGeostats: The
Geostatistical R Package. Version: 11.2.3, Free download from:http://
cg.ensmp.fr/rgeostats). The data fusion results are presented in the
following section.

5. Data fusion results

Because this is computationally expensive to apply the data fusion
with a large amount of observations, we performed the estimation on
11/29/2018. This day is one of the most sampled in November 2018
with more than 15,000 observations and it does not show any un-
explained variations of PM10 concentrations. The hourly PM10 map is
estimated using the � xed and mobile LCS observations collected during
each hour. Thus, at each measurement position, the average of the
observations is considered, and the external drift kriging approach is
applied.

5.1. Estimation of hourly PM10 concentrations in Nantes

To illustrate the data fusion in detail, results are � rst presented at 9
am on 11/29/2018. Fig. 7a shows the drift on the background char-
acterized by PM10 concentration maximums on the roads (up to
48.5 µg/m 3). Far from the main roads, the PM10 levels are about
12.5 µg/m 3. The LCS observations are mainly located in the center and
the east (from the south to the north) of the city with concentration

levels ranging from 12 to 64 µg/m 3. The corresponding VME is pre-
sented in Fig. 7b. The minimum VME is associated with the � xed LCS
observations (72 (µg/m 3)2) whereas the highest VME is calculated for
the mobile LCS data points and depending on the location it can reach
1467 (µg/m 3)2. For these data points, the high VME is explained by the
high measurement uncertainty (75%) and especially a high variability
meaning that the dispersion of the observations at these points during
the hour is signi � cant.

Note that the reference station measurements are not used in the
kriging approach because the data preprocessing is based on these
observations (cf. Section 3).

The fused map and the kriging standard deviation are given in
Fig. 7c and d, respectively. They are both reliant on the correlation
between the drift and the LCS data (Fig. 8a), and on the calculation of
the variogram of the residuals (Fig. 8b). The correlation is calculated by
considering the nearest model output point grid to the data point. In
this case, the correlation (Fig. 8a) is weak with R = 0.18. This may be
mainly due to the high variability of the sensor measurements implying
important di � erences with the drift patterns. In addition, the choice of
the 2016 annual average of the modeled pollutant concentrations does
not allow to capture local pollution events which might be observed by
the sensors. As mentioned in section 4, the correlation between sensor
data and hourly model outputs was investigated but the results were
not conclusive and further testing is needed before using such outputs.
Sensitivity tests were conducted to determine whether considering a
bu� er of the model outputs (de� ned by a radius from 10 m to 500 m)
around the LCS observation instead of the nearest point could improve
the correlation between the drift and the LCS observations. However,
these tests did not show signi� cant improvement. Details on the results
of the sensitivity tests can be found in the supplementary material
document as S2. The quality of the correlation has a signi� cant impact
on the data fusion because the drift must provide a statistical ex-
planation of the observations. The better the correlation, the better the
linear regression in kriging. The residuals between the drift and the LCS
data are calculated still considering the nearest model output point grid
to the data position. Then the variogram of the residuals is determined
(Fig. 8b), given the variance of the residuals in space over the domain.
Data fusion is performed based on this information. As a result, at 9 am
the fused map shows that PM10 concentrations range from 19.9 to
30.5 µg/m 3. The maximums of concentrations are on the roads similarly
to the drift. The average PM10 concentrations over the domain calcu-
lated by the data fusion is 1.5 times higher than the drift (20.6 and
13.7 µg/m 3, respectively). The annual mean may underestimate the
potential pollution occurring at hourly resolution. At 9 am, the average
PM10 concentrations of the reference stations is higher than the annual
mean over the domain (16 µg/m 3), so the pollutant concentrations are
raised to a level which is representative of this speci� c time with a
greater or lesser magnitude depending on sensor observations. Most of
the LCS data points are characterized by a high VME. Thus, only the
� xed sensor data and a few mobile sensor data points have a signi� cant
in� uence in the data fusion. The concentrations associated with the low
VME data points are then weighted for the estimation. Consequently,
the kriging standard deviation shows smaller errors (5 µg/m 3, refer to
Fig. 7d) around locations where there are high weighted LCS observa-
tions. Higher errors (up to 8 µg/m 3, refer to Fig. 7d) are remarkable far
from the observations.

To summarize the results for the entire day (11/29/2018), the
hourly fused maps of PM10 concentrations are presented from 7 am to
7 pm in Fig. 9. Disparate responses to the external drift kriging ap-
proach are remarkable such as:

• At 8 am, 11 am, 0 pm, 1 pm, 2 pm, 3 pm and 4 pm, there are local
hotspots of high or low PM 10 concentrations. Those are associated
with a few LCS data points of high or low PM 10 concentrations with
a relatively high in � uence in the data fusion (the hourly average of
the data points used in kriging is given in the supplementary
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materials as S3). This means that these points are associated with a
relatively low VME in kriging. The hourly VME associated with the
fused maps is given in the supplementary materials (S4). As ex-
pected, the � xed sensor data points are characterized by the lower
VME at any time. Depending on the hour, some mobile sensor data
points are also characterized by low VME and are considered as

reliable data in kriging. Where there is no LCS observation, the
background is updated depending on the LCS data with the most
important weight by increasing or decreasing the baseline con-
centrations de� ned by the drift. In addition, for those hours, the
correlation between the LCS data and the drift is ranging from 0.01
to 0.18 and the variograms of the residuals show high nugget e� ect

Fig. 7. The PM10 LCS observations (in µg/m3) overlaid the 2016 annual average of the PM10 concentrations (in µg/m 3) calculated by the ADMS-Urban model that is
de� ned as the drift in the data fusion (a), the variance of the measurement error (VME, in (µg/m 3)2) is shown with the drift in the background (b), the hourly fused
map with the PM 10 LCS observations (c) and the kriging standard deviation with the PM 10 LCS observations and the shape� le of the main roads on the background
(d), are presented on 11/29/2018 at 9 am in Nantes.

Fig. 8. The correlation plot between the LCS
observations and the drift (a) and the var-
iogram of the residuals (b) are derived at 9
am on 11/29/2018. On panel (a), the da-
shed red line represents x = y and the red
solid line corresponds to the estimated re-
gression. On panel (b), the black curve is the
experimental variogram and the green curve
the estimated variogram model.
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(20 µg/m 3) which supports the partial absence of correlation be-
tween LCS data and drift (cf. supplementary materials S5 and S6).
This implies a relatively high kriging standard deviation, up to
12 µg/m 3 (cf. supplementary materials S7).

• At 7 am, 9 am, and 10 am, there is no remarkable hotspots of PM10

concentrations. For these hours, there are more data points asso-
ciated with low VME that in � uence data fusion. The correlation
between the LCS data points and the drift is ranging from 0.05 to
0.28. The variogram of the residuals is characterized by a high
nugget e� ect (20 µg/m 3) but it is better structured and a variogram
model can be more easily � tted. This implies a relatively lower
kriging standard deviation, up to 6 µg/m 3 (cf. supplementary ma-
terials S7).

• At 5 pm, 6 pm and 7 pm, the correlation between the data and the
drift is negative. Thus, the drift for those hours is not a su � cient
approximation to be used for data fusion. Consequently, the esti-
mations are admitted as no relevant.

Results presented in Fig. 9 demonstrate that depending on the
number and the position of data points that show a low VME, the LCS

data may have a varying impact in the estimation. In addition, the
correlation between the data and the drift, and the related variogram on
residuals are responsible for the high estimation error. The main issue
remains on the fact that LCS measurements are not well statistically
explained by the drift. This could be due to the potential remaining bias
associated with the LCS data which has not been corrected by the
preprocessing described in section 3. The average from 7 am to 7 pm, as
presented in Fig. 10, is a more valuable estimation of the pollutant
levels for the day. That supports the fact that including all data is im-
portant to get a useful information. The daily average is used for the
assessment of the data fusion performance as discussed in the following
section.

5.2. Data fusion performance

To assess the data fusion performance,� rst the results were com-
pared to the model outputs and the observations of the reference sta-
tions. Then, we performed a sensitivity study by focusing on the e� ect
of the measurement uncertainty on the estimation.

Fig. 9. The fused maps for PM10 derived from the external drift kriging approach are shown from 7 am to 7 pm on 11/29/2018 in Nantes.
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5.2.1. Comparison between reference observations, model and data fusion
The observations of the reference stations, the data fusion and the

hourly modeled PM10 concentrations were averaged over the day (from

7 am to 7 pm) as mentioned in Section 5.1. The daily averages are
compared (Fig. 11) at each station of the regulatory network of AirPDL
(Fig. 1a). Fig. 11 shows that considering the model alone implies 8%
bias whereas including the LCS observations reduces the bias to 2%.
However, the concentration distributions related to the data fusion are
characterized by a lower dispersion than the reference observations and
the model estimation (1.1 µg/m 3 for data fusion compared to 5.1 µg/m 3

and 3.3 µg/m 3, for reference observations and model estimation, re-
spectively). Especially, the fusion smooths the PM10 peaks related to
local pollution events potentially occurring near the stations. This is
especially clear in the hourly comparison presented in the supplemen-
tary materials as S8. This could be explained by the predominance of
the drift over the data when the related VME is high. Note that because
we consider the mean of the observations at the measurement positions
over the estimation period (an hour), a smoothing of the pollution
events is expected for this period. In fact, local pollution events are
minimized in the estimation. This is remarkable, especially at Victor
Hugo station, which is under the in � uence of tra� c. In addition, the
raw LCS data were preprocessed using the observations from all the
reference stations (especially the daily mean of all the reference ob-
servations was used, cf.Section 3). This way the data fusion implies a
slight overestimate of the PM10 concentrations at urban background
stations and a slight underestimate at the tra� c station compared to the

Fig. 10. The daily average fused map for PM10 on 11/29/2018 in Nantes.

Fig. 11. The daily mean comparison between the PM10 observations (in black), the data fusion (in red) and the model (ADMS-Urban, in blue) in µg/m 3 at each
reference station of the Air Pays de la Loire monitoring network on 11/29/2018 in Nantes.
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reference.

5.2.2. Impact of the sensor measurement uncertainty on the estimation
The main constraint to use sensor data in air quality mapping re-

mains their measurement uncertainty. It has a signi� cant e� ect on the
data fusion approach by determining the weight allocated to the data.
Sensitivity tests were carried out to quantify the e � ect of the mea-
surement uncertainty on the estimation. In the previous results, a re-
lative uncertainty was de� ned (75% and 50% for mobile and � xed LCS
data, respectively, hereafter R1) based on the European directive and
the exploratory analysis of the dataset. The sensitivity study was per-
formed for a reduction of the initial uncertainty to the reference station
uncertainty (i.e. 25%, hereafter R2) and for the doubling of the initial
uncertainty (i.e. 150% and 100% for � xed and mobile sensors, re-
spectively and hereafter R3). The performance is derived using a cross
validation. It consists of leaving out one data point (i.e. the hourly
average of the LCS observations at a location) at a time and determining
how well this point can be estimated by external drift kriging using the
other data. For the three tests (R1, R2 and R3), results are presented in
Fig. 12 through boxplots of the main metrics of performance, namely
the Mean Bias of Error (MBE), the Mean Absolute Error (MAE) and the
Root Mean Squared Error (RMSE). These are de�ned as follows:
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Where N is the number of observations, zfusion is the estimated PM10

concentration value, and zobs i, is the ith observed PM10 concentration
value. The MBE, MAE and RMSE are related by the following inequal-
ities:

� � �MBE MAE RMSE N MAE (12)

The sensitivity study shows that by considering a measurement
uncertainty for � xed and mobile LCS which is equivalent to the

reference stations (25%), the estimation of PM10 concentrations by data
fusion shows a slightly better performance than doubling the un-
certainty (150% and 100%) or even by de� ning 75% and 50% for � xed
and mobile sensor respectively. This suggests that to have a signi� cant
impact on air quality mapping, the accuracy of the sensors should be as
good as possible.

As an illustration of the spatial di � erence between the data fusion
from R1, R2 and R3, the related fused maps at 8 am on 11/29/2018 are
given in the supplementary materials (S9). There is a maximum dif-
ference of 20 µg/m3 between R2 and R3. This highlights the importance
to estimate accurately the measurement uncertainty of the devices to
ensure relevant air quality mapping.

6. Conclusion

The recent technological developments in miniaturizing the instru-
ments to measure outdoor ambient air pollution o � er new possibilities
for air quality monitoring and mapping. Since the reference station
network is sparse and expensive, the new portable and low-cost devices
could provide observations of pollutants with a higher spatial and
temporal resolution. In this work, we investigated the potential added
value of these data with respect to the dispersion model (ADMS-Urban)
calculations for air quality mapping by applying a data fusion tech-
nique. This methodology consists in combining sensor data and dis-
persion model calculation to provide an estimation of pollutant con-
centration � elds at the urban scale. The estimation of PM10

concentration levels is performed in Nantes (France) on 11/29/2018 at
hourly time resolution. The sensor data are provided by AtmoTrack
which installs � xed and mobile sensors using driving school cars, am-
bulances and service vehicles as mobile platforms.

The exploratory analysis of the sensor observations demonstrates a
unique sampling coverage of the city although the sampling times were
limited by the drive hours. The distribution of the PM 10 sensor mea-
surements are characterized by two modes that are absent on the re-
ference observations. Those could be explained by measurements issues
which are not the scope of this study. The comparison between the
reference station observations and the average of 3 low-cost sensor
(LCS) replicates by way of time series for the entire sampling period
demonstrates good consistency even though they seem to slightly
overestimate the PM10 concentrations. The raw sensor dataset has been
preprocessed following 2 steps. First, the unreliable data were removed
from the dataset (6.5% of the mobile sensor data and 14% of the � xed
sensor data were eliminated) by applying a thresholding method based
on the repeatability criterion. Then, the bias related to the daily var-
iations of the background was corrected based on the daily average of
the reference station observations (AirPDL network). The corrected
data were then used in the spatial interpolation to estimate the PM 10

concentrations in Nantes. A data fusion technique was applied com-
bining the � xed and mobile sensor data and the 2016 annual average of
the PM10 concentrations calculated by the ADMS-Urban dispersion
model (provided by AirPDL). Especially, an external drift kriging ap-
proach is used, and the 2016 annual average from the model is de� ned
as the drift. In kriging, the variance of the measurement error (VME)
has been considered to deal with the measurement uncertainty and the
variability of the observations in the spatial interpolation. In this study,
a relative measurement uncertainty is de� ned such as 75% and 50% of
error is used for mobile and � xed sensors, respectively. The data fusion
was performed hourly from 7 am to 7 pm on 11/29/2018 using the
� xed and mobile sensor data. Results show that fused maps are closely
related to the relative variability associated with the data points. In
fact, the higher the variability is, the less the weight of the data point
will be on the estimation. Thus, the estimated PM 10 concentrations are
following the drift patterns. The estimation is also lead by the corre-
lation between the sensor data and the drift. The better the correlation
is, the lower the error related to the linear regression with the drift. In
addition, kriging relies on the variogram of the residuals which gives

Fig. 12. The Mean Absolute Error (MAE), the Mean Bias Error (MBE) and the
Root Mean Squared Error (RMSE) of the estimated PM10 concentrations in
Nantes on 11/29/2018 from 7 am to 7 pm derived from R1 (measurement
uncertainty of 75% and 50% for mobile and � xed data, respectively), R2
(measurement uncertainty of 25% for all data) and R3 (measurement un-
certainty of 150% and 100% for mobile and � xed data, respectively).
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the variance of the residuals in space over the domain. Consequently,
the response to data fusion is disparate over the day depending on this
information. When the VME is low and the correlation with the drift is
satisfactory, the LCS data are bringing new information to the drift
patterns. Conversely, when the VME is high and/or when the correla-
tion with the drift is not satisfactory the LCS data no longer a � ect the
mapping. The performance of the data fusion has been investigated by
comparing the daily average of the fusion, the reference observations
and the model outputs at each station of the AirPDL network. The es-
timation by external drift kriging reduces the bias from 8% to 2% when
considering LCS observations instead of the model alone. However, the
estimated PM10 distributions are characterized by a lower dispersion. In
conclusion, the data fusion smooths the PM10 concentration peaks but
presents better estimate of the pollutant levels in average. In addition,
the e� ect of the measurement uncertainty has been investigated by
doubling it or reducing it to the reference station measurement un-
certainty. The sensitivity tests show that the performance is increasing
by reducing the uncertainty to 25% and that there is a spatial impact on
the PM10 concentrations � elds. First, this highlights the importance to
estimate accurately the measurement uncertainty of the LCS, second it
demonstrates that we should be more con� dent in the LCS data despite
their imperfections to ensure added value in air quality mapping.
Among the exciting perspectives for the future, spatiotemporal kriging
could be investigated to use the information in space and in time pro-
vided by the sensor data. Also, the large number of data points re-
presents a real challenge and introduces the big data science for air
quality mapping. With more than 2000 data points for an estimation
period (1 h in this study), kriging calculation becomes very consuming
in time and could take a lot of calculation resources. To answer this
di� culty, geostatistical approaches speci� cally developed for large
datasets such asRivoirard and Romary, 2011, could be explored. Also,
machine learning techniques, as applied in Hu and Rahman, 2017,
could be investigated. These approaches allow to learn about historical
observations and environmental variables and reduce signi� cantly the
computing time of the calculations. Eventually, the resulting air quality
maps will be a unique support for various applications such as the es-
timation of the individual exposure, the communication to the citizens,
the air quality monitoring, and the improvement of the pollutant
emission inventories and pollution modeling.
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