Simulating secondary organic aerosol from anthropogenic and biogenic precursors: comparison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes - Ineris - Institut national de l'environnement industriel et des risques Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2018

Simulating secondary organic aerosol from anthropogenic and biogenic precursors: comparison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes

Résumé

New parameterizations for the formation of organic aerosols were developed. These parameterizations cover secondary organic aerosol (SOA) formation from biogenic and anthropogenic precursors, NOx dependency, oligomerization and the reactive uptake of pinonaldehyde. These parameterizations were implemented in a box model in which the condensation and/or evaporation of semi-volatile organic compounds was simulated by the Secondary Organic Aerosol Processor (SOAP) model to take the dynamic evolution of concentrations into account. The parameterizations were tested against several experiments carried out in previous studies in the EUPHORE outdoor chamber. Two datasets of experiments were used: the anthropogenic experiments (in which SOA is formed mainly from a mixture of toluene, 1,3,5-trimethylbenzene and o-xylene) and the biogenic experiments (in which SOA is formed mainly from alpha-pinene and limonene). When assuming no wall deposition of organic vapors, satisfactory results (bias lower than 20 %) were obtained for the biogenic experiments and for most of the anthropogenic experiments. However, a decrease of SOA concentrations (up to 30 %) was found when taking wall deposition of organic vapors into account (with the parameters of Zhang et al., 2014). The anthropogenic experiments seem to indicate a complex NOx dependency that could not be reproduced by the model. Oligomerization was found to have a strong effect on SOA composition (oligomers were estimated to account for up to 78% of the SOA mass) and could therefore have a strong effect on the formation of SOA. The uptake of pinonaldehyde (which is a high-volatility semi-volatile organic compound, SVOC) onto acidic aerosol was found to be too slow to be significant under atmospheric conditions (no significant amount of SOA formed after 3 days of evolution), indicating that the parameterization of Pun and Seigneur (2007) used in some air quality models may lead to an overestimation of SOA concentrations. The uptake of aldehydes could nevertheless be an important SOA formation pathway for less volatile or more reactive aldehydes than pinonaldehyde. Regarding viscosity, a low effect of viscosity on SOA concentrations was estimated by the model, although a decrease of SVOC evaporation was found when taking it into account, as well as a lower sensitivity of concentrations to changes of temperature during the experiments.
Fichier principal
Vignette du fichier
2018-164.pdf (2.03 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

ineris-03319039 , version 1 (11-08-2021)

Identifiants

Citer

Florian Couvidat, Marta G. Vivanco, Bertrand Bessagnet. Simulating secondary organic aerosol from anthropogenic and biogenic precursors: comparison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes. Atmospheric Chemistry and Physics, 2018, 18 (21), pp.15743-15766. ⟨10.5194/acp-18-15743-2018⟩. ⟨ineris-03319039⟩

Collections

INERIS
10 Consultations
45 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More