Skip to Main content Skip to Navigation
Journal articles

A statistical physics approach to perform fast highly-resolved air quality simulations. A new step towards the meta-modelling of chemistry transport models

Abstract : A methodology rested on model-based machine learning using simple linear regressions and the parameterizations of the main physics and chemistry processes has been developed to perform highly-resolved air quality simulations. The training of the methodology is (i) completed over a 6-month period using the outputs of the chemical transport model CHIMERE, and (ii) then applied over the subsequent 6 months. Despite rough assumptions, this new methodology performs as well as the raw CHIMERE simulation for daily mean concentrations of the main criteria air pollutants (NO2, Ozone, PM10 and PM2.5) with correlations ranging from 0.75 to 0.83 for the particulate matter and up to 0.86 for the maximum ozone concentrations. Some improvements are investigated to expand this methodology to several other uses, but at this stage the method can be used for air quality forecasting, analysis of pollution episodes and mapping. This study also confirms that including a minimum set of selected physical parameterizations brings a high added value on machine learning processes.
Document type :
Journal articles
Complete list of metadata

https://hal-ineris.archives-ouvertes.fr/ineris-03319055
Contributor : Gestionnaire Civs <>
Submitted on : Wednesday, August 11, 2021 - 3:36:16 PM
Last modification on : Thursday, August 12, 2021 - 3:09:29 AM

File

2019-029_post-print.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Bertrand Bessagnet, Florian Couvidat, Vincent Lemaire. A statistical physics approach to perform fast highly-resolved air quality simulations. A new step towards the meta-modelling of chemistry transport models. Environmental Modelling and Software, Elsevier, 2019, 116, pp.100-109. ⟨10.1016/j.envsoft.2019.02.017⟩. ⟨ineris-03319055⟩

Share

Metrics

Record views

29

Files downloads

17