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• Spatialized data on environmental lead
contamination was used in an exposure
model.

• Ingestion and inhalation of lead by chil-
dren in France was mapped.

• A PBTK model was used to map predicted
blood lead levels in children.

• Predicted blood lead levels were com-
pared to biomonitoring data.
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The decrease in levels of lead in air and drinking water over the last 40 years has resulted in an overall decrease in
blood lead levels (BLLs). However, there is no known safe level of lead regarding developmental effects in children.
This paper maps predicted BLLs of children in France, resulting from a simulated chronic exposure in two steps,
with the aim of identifying areas with environmentally overexposed populations. Probabilistic estimates of BLLs
based on environmental contamination were obtained and compared to biomonitoring data. First, the contribution
of various environmental exposure pathways was estimated using a multimedia exposure model: spatialized data on
soil, drinking water and air contamination, together with data on food contamination and ingestion, was joined
using geostatistical approaches. In a second step, a Physiologically Based Toxicokinetic (PBTK) model provided esti-
mates of BLLs. Probabilistic estimates of BLLs were obtained by simulating uncertainty and variability of exposure
levels, physiological characteristics and lead-specific parameters in the PBTK model.
The median and 95th percentile of predicted BLLs in children aged 1 to 11 were compared to recent biomonitoring
data obtained in France in young children (SATURNINF study): median predictions were overestimated in infants
and in agreement with median observed BLLs in children aged 3 to 6. Upper bounds of predicted BLLs were protective
due to uncertainties in exposure estimates. Themain source of exposure appeared to be drinkingwater in children over
2 years old, and vegetal food andmilk in children under 2 years old. Although elevated drinkingwater lead levelswere
not related to large geographical areas, the relatively fine resolution map also pinpointed geographical areas of con-
cern due to elevated soil lead levels.
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1. Introduction

Despite a decrease in lead levels in air and gradual replacement of lead
plumbing, which together resulted in a 10-fold decrease in blood lead levels
(BLLs) over 20 years (Manton et al., 2001), elevated BLLs are still reported.
Lead contamination is of special concern in pediatric populations due to the
adverse developmental effects of lead and because there is no known safe
level regarding developmental effects (WHO, 2011a). Lead exposure in
children is often measured in biomonitoring programs which illustrate
local variations; for example around 1992 in the US, BLLs greater than
10 μg/dL were observed in 6.1% (Snyder et al., 1995) to 30% (Casey
et al., 1994) or even 68% (Melman et al., 1998) of samples in children. In
France, in 1995 and 1996, BLLs were greater than 10 μg/dL in 2.1% chil-
dren aged 1 to 6 years old (Huel, 1997; Chanel, 1999). In 2008, this propor-
tion had dropped to an estimated 0.09% in children aged 6 months to
6 years (Etchevers, 2013). Although the proportion of children at high
risk of lead poisoning has decreased, lead remains a major public health
concern (WHO, 2011b). For example, elevated BLLs must be reported to
health care authorities in France: in 2015, the threshold for reporting
cases of elevated BLLs was lowered from 10 μg/dL to 5 μg/dL, to allow
for continued identification of most exposed children in a context of an
overall decrease in exposure (Arrêté du 8 juin, 2015; Haut Conseil de la
Santé Publique, 2014).

Environmental exposure to lead, a natural component of soils and an an-
thropogenically derived pollutant, can occur through several pathways.
Lead can enter the human body through dust inhalation and ingestion, di-
rect ingestion of soil and drinkingwater, and consumption of plants and an-
imal products grown in contaminated soil (Dudka and Miller, 1999;
Hawley, 1985; Rabinowitz et al., 1985). Lead found in tap water usually
comes from the corrosion of older fixtures or from the solder that connects
pipes.

Multimedia exposuremodels can be used to quantify the contribution of
each source of exposure towards total exposure (McKone and MacLeod,
2003) by modeling lead transfers between environmental compartments.
Contamination can be mapped by joining several databases of spatialized
environmental data, thus providing a description of the global source-
effect chain of exposure as illustrated in a previous study (Caudeville
et al., 2012). Regulators rely increasingly on maps as decision-making
tools, as illustrated in the recent Environmental Public Health Tracking ap-
proach (CDC, 2021). For proper interpretation prior to decision-making,
the maps must also provide understanding of the sources of contamination
and of the variance of the model outcome. In a context of exposure reduc-
tion, the maps of uncertainty help identify areas where additional data
would improve spatial representativeness of the variables investigated ac-
tion prioritization.

Combining databases of georeferenced measures is challenging in prac-
tice. Examples of approaches that estimate the exposure dose by integrating
georeferenced measures or model predictions include mainly studies on
single environmental media, such as soil (McGrath et al., 2004), water
(Kavcar et al., 2009), and air (Uzu et al., 2011). Combining databases at a
national scale and fine resolution is challenging due to lack of common spa-
tial support of environmental quality measurements and to differences in
time scale between punctualmeasurements or yearly averages for example.
Various techniques are thus used to take benefit from all available informa-
tion (Gay and Korre, 2006; Goovaerts, 2006), such as including information
from auxiliary variables when sampling density is low (van de Kassteele
et al., 2009; Bernard-Michel, 2006).

In a previous study, environmental lead contamination was mapped
using a multimedia exposure model in the Hauts de France region, which
represents 7% of population in the North of France, in part of the popula-
tion aged 2–70 years old (Caudeville et al., 2012): children were identified
as being at greater risk to high exposure levels compared to the maximum
tolerable daily intake. A multimedia exposure model has also been used
to estimate exposure of children in France in a different study (Glorennec
et al., 2007), but could not include the more recent, spatialized data on
soil contamination (Duigou and Baize, 2010). Previous research has also
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provided accurate probabilistic estimates of BLLs in the US by coupling
IEUBK with an exposure module, Stochastic Human Exposure and Dose
Simulation (SHEDS) (Zartarian, 2017), without however including legacy
soil lead levels.

Estimates of total environmental exposure of humans to lead can be
processed using toxicokinetic models to simulate internal concentration
levels in tissues. The kinetic models available in the literature differ in
how detailed and realistically the physiological processes related to growth
and lead kinetics are described (Pounds and Leggett, 1998; Hogan et al.,
1998; Sharma and Reddy, 2012; Leggett, 1993; O'Flaherty et al., 1998;
White et al., 1998). Kinetics in bone are of paramount importance under
chronic exposure scenarios since bone contains the majority of the body's
lead burden (Hu et al., 1998) which can leach into blood and represent a
considerable internal source of exposure to lead (Gulson et al., 1995). The
ICRP (or Leggett) biokinetic model (Pounds and Leggett, 1998; Leggett,
1993), the Leggett+model (Vork et al., 2013), and the US EPA's Integrated
Exposure Uptake Biokinetic (IEUBK) leadmodel (Hogan et al., 1998; White
et al., 1998) have been used in risk assessment (Cornelis et al., 2006;
Hassanien and Horvath, 1999; Lindern, 2003; Lindern, 2016). In this
paper, BLLs were predicted using the more realistic Physiologically Based
Toxicokinetic (PBTK) model developed by O'Flaherty et al. (O'Flaherty
et al., 1998; O'Flaherty, 1991a; O'Flaherty, 1991b; O'Flaherty, 1991c;
O'Flaherty, 1993; O'Flaherty, 1994; O'Flaherty, 1995; O'Flaherty, 2000)
that accounts for bone to blood lead mobilization, describes lead transfers
from compartments as blood flow (perfusion) limited and includes growth
equations (O'Flaherty, 1993; O'Flaherty, 1995).

The present paper aims to assess geographic differences in exposure to
lead and in predicted BLLs in France for young children resulting from in-
gestion of food, water, and soil (including in contaminated areas), and
from inhalation. Thus, the approach used in (Caudeville et al., 2012) was
extended to the whole of France and applied by focusing on children, in-
cluding infants. First, spatialized data on environmental contamination
was combined to estimate environmental exposure to lead. A PBTK model
was used to identify critical ages by studying the modelled relationship be-
tween age, exposure dose, BLLs, and body burden. The multimedia expo-
sure model predictions were used as an input to the PBTK model to
generate maps of the distribution of BLLs in France. Finally, the predicted
BLLs in France were compared to biomonitoring data.

2. Material and methods

2.1. Multimedia model of exposure to lead

Spatialized probabilistic estimates of lead exposurewere obtained using
a stochastic multimedia exposure model, MODUL'ERS, previously devel-
oped by Ineris (Bonnard, 2003; Bonnard and McKone, 2009; Bonnard,
2017): daily ingested doses were estimated based on lead transfer from
the environment (air, soil, water) through local food chains. The model
was implemented in the PLAINE GIS-based platform for environmental in-
equalities analysis (Caudeville et al., 2012; Caudeville, 2012) in order to
combine various databases of georeferenced measures using several
geostatistical methods, such as kriging, and to estimate air lead levels at
the same spatial resolution as the ingested doses. Kriging topsoil concentra-
tion levels propagate spatial interpolation uncertainties which are higher in
areas of the grid where few data are available, and thus helps to map
uncertainty.

Both spatialized data and non-spatialized data were input to the multi-
media exposure model subgroups in order to estimate daily ingested doses
of lead via locally produced vegetables, store-bought products, soil and
drinking water. Spatialized data included environmental lead concentra-
tions for air, water, and soil (Table 1) and population density. Soil contam-
ination was estimated based on atmospheric deposition, leaching,
background topsoil lead levels reflecting natural lead levels, and diffuse an-
thropic sources (Caudeville, 2012). Auxiliary variables were used to com-
plete data when sampling density was low. For example, in many water
samples, lead was under the limit of detection: multiple imputation



Table 1
Data used in the multimedia exposure model.

Model
parameter

Support and
resolution

Spatialization method Details Source

Atmospheric
deposition
and lead level

Centroid of
0.5° × 0.5°
grid

Kriging Predictions for year 2005 by a Eulerian
atmospheric dispersion model, including
industrial and transport sources over Europe

Levels from the Chimere model (Menut et al., 2013) (INERIS).
Annual mean levels and deposits aggregated for year 2005.

Lead in soil Point:
sample;
surface:
communea

Kriging Around 100,000 samples, after 1990 Trace metal topsoil database (Duigou and Baize, 2010) and the
French Soil Quality Monitoring Network

Background
lead in topsoil

1 × 1 km
grid

Linear mixed model Based on 2091 samples French National Soil Quality Monitoring Network (Arrouays,
2002; Lacarce et al., 2012) and parent material data (INRAE)
(ETM, INRA & ADEME Program).

Lead in water Multiple
imputation
method:
district

Multiple imputation:
expectation-maximization
algorithm and Bayesian
classification model

Levels in water supply systems at a commune
scalea, measured between 2000 and 2012,
around 100,000 samples

Sise'eaux database (Davezac, 2008), administrative boundary map
of France, map of distribution system easements (Ioannidou et al.,
2018)

Soil/dust
ingestion

Not
spatialized

MODUL'ERS (Bonnard, 2017) adapted from (Davis and Mirick,
2006) and (US EPA (US Environmental Protection Agency), 2011;
van Holderbeke, 2007)

Food and water
ingestion rates

Averages for
each of 9
French
areas.

Years 2006–2007, 1455 children, in each
region

Children aged 0–2 years old: Surveys around nuclear power plants
(Bonnard, 2017),
Children over 2: Individual and National Food Consumption,
INCA, study (Volatier, 2000), see also (Glorennec et al., 2007) in
Ciblex database (Beaugelin-Seiller, 2002; ADEME and IRSN, 2003)

Food
contamination

Not
spatialized

Years 2007–2009, 19,830 products covering
212 food types

Second French Total Diet Survey, EAT2 (ANSES) (ANSES, 2011)

a A “commune” usually covers around 10 km2.
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methods were used to estimate values with better accuracy than by replac-
ing the value by the limit of detection.

Non spatialized data (Table 1) included national data for store-bought
foodstuffs contamination and regional, age-specific, dietary habits. Ingestion
rates (SI Table 1)were estimated using bodyweight, water consumption and
quantity of soil ingested for each age group. The percentage of food that was
homegrown was also included in the model for each grid unit depending on
the degree of urbanization andwas obtained from a1991 INSEE (Institut Na-
tional de la Statistique et des Etudes Economiques) survey in France
(Bertrand, 1993). The model does not take bottled water consumption into
account: drinkingwater was assumed to be only produced and consumed lo-
cally. Non-environmental contamination, as deteriorated lead paint and
breast milk, was not included since no spatialized or individual data was
available. The contribution of the dermal exposure pathway is usually low
(Stauber et al., 1994) and was not taken into account.

Dietary intakes were estimated assuming 100% bioavailability in food
and water and 60% bioavailability in soil and dust (US EPA, 2013). Here
the term bioavailability refers to lead that is available for absorption not
the absorbed fraction. Drinking water was assumed to be free of suspended
particles which may bear lead.

2.2. Lead PBTK model in children

2.2.1. Description
The PBTK model developed by O'Flaherty et al. (O'Flaherty et al., 1998;

O'Flaherty, 1991a; O'Flaherty, 1991b; O'Flaherty, 1991c; O'Flaherty, 1993;
O'Flaherty, 1994; O'Flaherty, 1995; O'Flaherty, 2000) includes five main
compartmentswithflow limited kinetics except in bone. Bone is subdivided
into cortical and trabecular bone. Cortical mature bone is divided into con-
centric shells, which model bone canaliculi, through which lead diffuses to
and from the blood in the innermost shell. Lead is also transferred between
all types of bone and plasma through bone formation and remodeling pro-
cesses. In this paper, the model version described in O'Flaherty (2000) was
used, and the number of bone shells was set to seven.

Physiological changes were modelled as functions of age (e.g. body-
weight, bone formation rate, lead transfer rate from immature to mature
bone, absorbed fraction of lead) and of bodyweight (e.g. fractional organ
volumes, cardiac output, respiratory rate, and glomerular filtration rate)
(O'Flaherty, 1991c; O'Flaherty, 1994; O'Flaherty, 2000).
3

2.2.2. Model evaluation

2.2.2.1. Comparison with kinetics data in children. Consistency between the
predictions obtained with the recoded PBTK model and those published
during the original model development (O'Flaherty, 1995) were checked,
using the parameter values used at the time for four studies (see SI section
2.2.1). Values of several model parameters (BIND, KBIND, P0, D0, R0, par-
tition coefficients) have been changed over time (see SI section 2.1), as an
increasing amount of data was available, and the model was further devel-
oped and extended. The comparison of our predictions with the data is re-
ported in SI section 2.2.2. As the data on actual lead intakes in children and
the resulting kinetics are sparse, the results obtained with the model pub-
lished by O'Flaherty (1995, 2000) were also compared to those obtained
with IEUBK (White et al., 1998) at identical uptakes (see SI section 3.1
for details).
2.2.2.2. Comparison of predicted and observed relationship between blood and
plasma lead. The relationship between lead in plasma and lead in whole
blood was studied because recent data challenges the way this relationship
was modelled, and several parameter values have been used in various
studies. Lead binds to red blood cells and only the fraction in plasma is read-
ily diffusible to target organs (Hu et al., 1998; Cake et al., 1996). It is there-
fore currently unclear whether biomonitoring should use whole blood lead
levels, which present fewer interindividual variations (Sommar et al.,
2014), or plasma levels, which are lower (Bergdahl et al., 2006) but may
bemore relevant in a toxicological context and are proportional to exposure
(Sommar et al., 2014). These considerations have encouraged recent publi-
cation of additional data obtained with more precise equipment (Manton
et al., 2001; Bergdahl et al., 1997; Bergdahl et al., 1998; Bergdahl et al.,
1999; Hernández-Avila et al., 1998; Hirata et al., 1996; Schütz et al.,
1996; Smith et al., 2002) and, in some cases, with care about sample con-
tamination at low lead levels (Manton et al., 2001).

In themodel byO'Flaherty, the relationship between lead in plasma and
lead in whole blood is based on experimental studies (deSilva, 1981;
Manton and Cook, 1984; Manton and Malloy, 1983; Marcus, 1985) (de-
scribed in SI section 2.1). In this paper, predicted plasma and BLLs were
compared to more recent data (Manton et al., 2001; Bergdahl et al., 1997;
Bergdahl et al., 1998; Bergdahl et al., 1999; Hernández-Avila et al., 1998;



Fig. 1. Predicted blood lead concentration using IEUBK and the PBTK model by
O'Flaherty et al.
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Hirata et al., 1996; Schütz et al., 1996; Smith et al., 2002; MacMillan et al.,
2015) (SI section 3.2) and to the predictions obtained with the Leggett+
model (Vork et al., 2013) and with various updated models (Sommar
et al., 2014; Bergdahl et al., 1997; Bergdahl et al., 1998; MacMillan et al.,
2015).

2.2.2.3. Predicted kinetics in bone and blood compartments. Predicted lead se-
questration in bone and bone to bloodmobilizationwere studied using sim-
ulations, with the aim of i) detecting whether elimination or sequestration
pathways became saturated at high doses and ii) identifying critical ages for
lead accumulation. First, BLLs were predicted from age 1 to 11, assuming
constant exposure to ingested doses ranging from 10−5 to 10 mg/kg BW/
day. In a second step, constant exposures of one-year duration at increasing
age and constant exposures of increasing duration were simulated. In both
cases, the amount of lead in bone and the BLL in 5- and 11-year-olds was
quantified in order to estimate howmuch of the lead in blood was attribut-
able to ancient exposures and bone to blood mobilization according to the
model.

2.2.2.4. Sensitivity analyses of the PBTK model. Sensitivity analyses of the
PBTK model were performed, first using the Morris method (Morris,
1991) as a screening approach with 33 parameters, then using the
variance-based Sobol method (Saltelli et al., 2008; Sobol et al., 2007)
with a subset of influent parameters (SI section 3.3). Sensitivity of two out-
puts, BLL and body burden, were assessed using first order and total Sobol
sensitivity indices, at ages 1, 3, and 11 years old, according to the median
exposure scenario estimated for 11-year old children in France.

2.3. Mapping blood lead levels in children in France

Probabilistic, spatialized, estimates of exposure to lead were input into
the PBTK model in order to map median, 95th percentile and variance of
BLLs, and to estimate the overall probabilistic distribution in France. The
distributions represent both exposure and physiological variability and
uncertainty.

2.3.1. Exposure scenario
France was mapped as a grid with 59,266 units. Air lead levels were es-

timated using the multimedia exposure model, assuming constant levels in
each grid unit throughout the 11-year simulation period.

In each grid unit, in each age group, and for each year, probabilistic dis-
tributions of ingested daily doses were obtained using statistical distribu-
tions of environmental contamination data to propagate uncertainty and
variability throughout the multimedia exposure model (Caudeville et al.,
2012). Exposure was assumed to be constant within four age groups,
[0–1] [1–2], [2–7], and [7–11] years old. Each child was assumed to re-
main in the same grid unit at the same percentile of ingestion exposure
throughout the simulation, therefore the variability is a population-based
variability and does not represent repeated measurement variability that
could be observed for each child.

2.3.2. Estimation of population blood lead levels
The PBTKmodel was used to predict distributions of population BLLs in

each grid unit based on air lead levels and probabilistic ingested doses for
each age group. In the PBTK model, variability of physiological parameters
and uncertainty on lead-specific kinetic parameters were modelled with
normal distributions (see SI section 4.1). Several physiological functions
in the PBTK model depend on bodyweight, such as fractional organ vol-
umes, cardiac output, respiratory rate, and glomerular filtration rate. Vari-
ability around bodyweight was assumed to follow a normal distribution
centered on the bodyweight predicted by the model by O'Flaherty et al.
(O'Flaherty, 1993) and with a coefficient of variation of 11% which was
based on growth charts (Centers for Disease Control and Prevention
(CDC) - National Center for Health Statistics, 2000a; Centers for Disease
Control and Prevention (CDC) - National Center for Health Statistics,
2000b; Centers for Disease Control and Prevention (CDC) - National
4

Center for Health Statistics, 2000c; Centers for Disease Control and
Prevention (CDC) - National Center for Health Statistics, 2000d) (see SI sec-
tion 4.2). Maps of median and 95th percentile were generated using 1000
Monte Carlo simulations in each grid unit, sampling from both ingested
doses and PBTK parameter distributions. The spatialized population density
was thereon used to estimate the probabilistic distribution of the BLL in the
population.

Predicted BLLs were compared to French biomonitoring data collected
in children, in the Saturn-Inf study, in 2008, which was conducted by the
Institut de Veille Sanitaire (InVS) (Etchevers, 2013): BLLs had been mea-
sured in 3831 children aged between six months and six years old. The es-
timated BLL in the population studied was reported to follow a log-normal
distribution, with geometric mean 1.5 μg/dL, median 1.5 μg/dL and 95th
percentile 34.2 μg/dL. Quantitative comparisons with our predictions
were limited because our predicted BLLs were estimated at set ages,
whereas biomonitoring data was available as aggregate statistics in age
groups. For example, predictions at age two were compared with data ob-
tained in children aged between one and two years old.
2.4. Software

Environmental exposure was assessed using the multimedia model in-
cluded in MODUL'ERS (Bonnard, 2010) and the PLAINE GIS-based plat-
form (Caudeville et al., 2012). Environmental data was processed using R
version 3.6.1 (R Core Team, 2019). The PBTK model published by
O'Flaherty was rewritten and implemented in R version 3.6.1 (R Core
Team, 2019), using packages deSolve (Soetaert et al., 2010), data.table
(Dowle and Srinivasan, 2019), fitdistrplus (Delignette-Muller and Dutang,
2015) and sensitivity (Pujol, 2019), and also implemented in GNU
MCSim v6.2.0 (Bois, 2009).
3. Results

3.1. PBTK model evaluation

3.1.1. Comparison with IEUBK predictions in children
Predicted BLLs obtained with IEUBK and the O'Flaherty model, using

the IEUBK default exposure scenario, were in agreement in children up to
4 years old. Exposure levels peaked at around 30 μg/day at age 2, resulting
in BLLs around 8 μg/dL (Fig. 1). After age 4, the predicted BLLs were higher
using the PBTK model.



C. Tebby et al. Science of the Total Environment 808 (2022) 152149
3.1.2. Evaluation of model characteristics

3.1.2.1. Relationship between plasma and blood lead levels.At environmentally
relevant levels (in the range of 0.5–20 μg/dL in blood) the linear relation-
ship between blood and plasma lead levels appeared to be satisfactory, as
in (Manton et al., 2001), but the plasma levels were overpredicted in the
lower range of BLLs according to recent studies (Manton et al., 2001;
Hernández-Avila et al., 1998; Smith et al., 2002; MacMillan et al., 2015)
(Fig. 2). At higher BLLs, up to 100 μg/dL, the curvilinear relationship pre-
dicted by the model by O'Flaherty et al. appeared to be appropriate, as
noted in studies with higher exposures (deSilva, 1981; Manton and Cook,
1984), though these studies may have suffered from overestimation in
their lower range. Overall, the relationship was similar, though less steep,
to the relationship used in the Leggett+ model within a smaller range of
BLLs (Fig. 2). New estimates of the capacity (BIND) and the dissociation
constant (KBIND) parameter values (1.92 mg/L and 0.00225 mg/L respec-
tively) provided better predictions of recent blood and plasma data, but
these modifications were discarded since they resulted in higher BLLs
than predicted by the original model. The upper limit of the domain of ap-
plicability appeared to be 100 μg/dL, since the small number of measure-
ments greater than 100 μg/dL were not well predicted (Fig. 2 and SI
section 3.2).

Simulations showed that BLLs increased linearly with the ingested daily
dose up to 0.01mg/kg BW/day (SI section 3.4, SI Fig. 11) and reach around
33 μg/dL. At this exposure level, 99.7% of lead in blood is bound to red
blood cells. At higher exposure doses, the BLL is no longer representative
of the amount of lead being absorbed, sequestered and eliminated, due
the relationship between plasma and blood lead levels.
3.1.2.2. Relationship between bone and blood lead levels. The skeletal growth
model resulted in age-dependent sequestration in bone and bone to blood
mobilization in older children. Simulations showed that under a constant
dietary exposure, the sequestration of lead in bone was maximal at age
2 weeks, due to a high absorbed fraction; sequestration then sharply de-
creased to around 10% at ages 18 months to 5 years old, then gradually in-
creased as the proportion of bone in the body, the proportion of adult bone,
and the rate of transfer of lead from cortical to adult bone increased (SI sec-
tions 3.5 and 3.6). Bone to blood mobilization only affects BLLs in young
children on a short term.When environmental exposure ceases, the amount
of lead in bone rapidly decreases because of the small proportion of mature,
slowly perfused, cortical bone in children. As a result, in young children,
BLLs are mostly representative of very recent exposure. Bone to blood mo-
bilization increases with age. For example, at age 11, although mature
Fig. 2. Relationship between plasma lead level and total blood lead level using data fro
Sommar et al., 2014; Bergdahl et al., 1997; Bergdahl et al., 1998; Bergdahl et al., 1999
2002; Manton and Cook, 1984; Manton and Malloy, 1983; MacMillan et al., 2015).
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cortical bone still only represents 50% of total bone volume, only 31% of
bone lead dates from the past year (SI section 3.6).

The sensitivity analyses in 1, 3 and 11-year-olds (see SI section 3.3)
showed that BLL was highly sensitive to the parameters related to lead
binding to red cells (BIND and KBIND), to the absorbed fraction (frabs_var)
of ingested lead and to elimination from plasma by glomerular filtration
(plasma_Cl_var). The body burden (which is mostly concentrated in
bones) was mostly sensitive to variations in absorbed fraction and elimina-
tion by glomerular filtration. The proportion of bone in the body was also
highly influential (ske_coef) in particular in 3-year-old children, as well as
the transfer from plasma to forming bone (LEAD). In 1-year old children,
the cortical vs. trabecular bone ratio and the proportion of bone formation
rate occurring in the cortical bone were also important. These results con-
firm that, in children, lead is mostly sequestered in bone by clearance
from plasma during bone formation.

3.2. Maps

3.2.1. Environmental contamination
Environmental exposure was estimated by first mapping the environ-

mental contamination in air, soil and water on a fine resolution: the maps
show areas where high exposures are more likely to occur (Fig. 3).

Lead levels in air are highest in industrial areas, around Paris, the Rhone
valley and along the Mediterranean coast (Fig. 3A). The map of lead levels
in air shows a continuous spatial structure due to high spatial autocorrela-
tion associated with air dispersion. Soil lead concentrations are related to
the geology and are highest in areas with volcanic rock, in particular
round the Massif Central (Fig. 3B). A small number of hotspots can be iden-
tified on the map which match certain sites which are declared as poten-
tially polluted according to the Basol database (SI Fig. 24B). Lead levels
in tap water display smaller scale local variations that depend on adminis-
trative unit boundaries (Fig. 3C).

3.2.2. Contributions of the various exposure routes
Using the estimated exposure as an input to the PBTK model showed

that ingestion was the main source of exposure in children. The estimated
contribution of air inhalation for a median exposure level in France was
0.5% in 1-year-olds and 2% in 11-year-olds. Within ingested lead, the con-
tributions of the various sources of exposure depend on the age: children
aged 0–2 years old are mostly exposed to lead via vegetal foodstuff and
milk; in children over 2 years old the main source of lead exposure is drink-
ing water, followed by vegetal foodstuff (mainly store-bought) (Table 2, av-
erages over all grid units).
m (deSilva, 1981) as shown in (Marcus, 1985) and data from (Manton et al., 2001;
; Hernández-Avila et al., 1998; Hirata et al., 1996; Schütz et al., 1996; Smith et al.,



Fig. 3.Map of lead concentrations in air (A), soil (B) and drinking water (C).
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3.2.3. Blood lead levels
Median and 95th percentiles of predicted BLLs in France in each age

group are reported in Table 3. The median predicted BLL was higher than
observed in biomonitoring data for children under 2: BLLs were over pre-
dicted 4-fold in children under 1 year old and 2-fold in ages 1 to 2. As
much as 39% of children under 1 were predicted to have a BLL greater
than 5 μg/dL whereas this was observed in less than 5% of each age
group. For ages 3 to 6, the predicted BLLs are in good agreement with
those reported in children in 2008 in France (Etchevers, 2013), where me-
dian BLL ranged from 1.48 to 1.57 μg/dL in ages 2 to 6 years old (Table 3).

The spatial distribution of the median and 95th percentile of predicted
BLLs in five-year-old children in France are represented in Fig. 4 (age 1 and
11 are provided in SI Figs. 20 and 21). At age 5, drinking water is the main
source of exposure, which explains that areas of high exposure are located
in hotspots. Indeed, in 5 year-olds, the correlation between p50 of BLLs and
median drinking water lead level in each grid unit (correlation coefficient
between log-transformed values, r = 0.62) is higher than the correlation
between p50 of BLLs and median soil lead level in each grid unit (correla-
tion coefficient between log-transformed values: r=0.26). Themap of var-
iance of the predicted BLLs (SI Fig. 22) indicates higher variability and
uncertainty in predictions in areas with elevated blood lead levels and in
areas with larger kriging variance in the estimation of soil lead levels (SI
Fig. 24B).

4. Discussion

The maps of predicted BLLs in France indicate areas with environmen-
tally overexposed populations. Environmental contamination was mapped
to assess environmental inequalities of lead exposure in France. The maps
of predicted BLLs reflect a complex set of spatial and environmental factors
which operate at different spatial scales.

Certain hotspots can be recognized as legacy sites (identified using the
Basol database (FrenchMinistry in Charge of the Environment, n.d.), main-
tained by the French Ministry in charge of environment, SI Fig. S24B) such
Table 2
Contributions (%) of each source of exposure to total lead ingestion at ages
0–12 years old.

Age group (years) Soil Water Vegetal Meat Milk

[0–1] 2.5 14.4 51.6 0.1 31.5
[1–2] 5.2 21.4 48.1 2.5 22.9
[2–7] 5.9 39.5 29.4 5.5 19.7
[7–12] 5.2 40.4 32.3 6.7 15.5
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asMetaleurop andMortagne duNord (Caudeville et al., 2012). However, in
many cases, measurements of lead in topsoil were not available around
known legacy sites. The kriging approach (Caudeville, 2012) allowed us
to propagate spatial interpolation uncertainties which are higher when
few data are available to estimate topsoil concentration in the modeling
grid (mostly in mountainous areas, see kriging variance in soil levels, SI
Fig. 24B).

The discrepancies between predicted and observed BLLs in young chil-
dren may arise from overestimated media intake in young children. Al-
though other biomonitoring studies have reported 30% higher BLLs in
children aged 1 and 2 compared to other age groups in the US (Aelion
and Davis, 2019), children under age 1 did not have elevated BLLs in this
US study (Aelion and Davis, 2019), and the 30% difference was smaller
than our overestimation. The data on quantities of foodstuff ingested by
children aged 0–2 years old was obtained from different databases using
different methodologies (Bonnard, 2017; Volatier, 2000) and originate
from scenarios used in risk assessment. The resulting exposure estimates
represent much higher ingested doses in children under two, with a 5.2 me-
dian decrease between age 0–1 and age 7–11 groups (SI section 5, Fig. 23),
which is consistent with the three-fold decrease observed in BLLs. The dis-
crepancies could also arise from the PBTK model, which overestimated
BLLs (though by less than a two-fold factor) in infants in the only study in
children where the actual lead intake had been measured and compared
to resulting BLLs. The PBTK model had been validated in adults, for
which experimental data on the relationship between actual intakes and
BLLs is available. Such data is not available in children.

In this paper, uncertainty on exposure and internal kinetics, as well as
physiological variability, were propagated through to the final estimates
of BLLs, using Monte Carlo simulations. Our predictions included a higher
proportion of high BLLs than observed in biomonitoring data. Indeed, the
95th percentile was overpredicted by at least 2-fold at all ages, up to 13-
fold in children under 1 year old. The fact that the range of predictions
was wider than the observations may indicate that the simulated variabil-
ity, in particular in the exposure model, may have been too large, or that
the uncertainty in predictions was large. Coefficients of variation on physi-
ological and lead-specific internal kinetic parameters was indeed only 10%
and would not have caused such discrepancies. On the other hand, the geo-
metric coefficients of variation in soil ingestion and dietary lead intakes
were around 200% and the arithmetic coefficient of variation in soil lead
levels was around 30%. Furthermore, in the multimedia exposure model,
there was a high level of uncertainty and variability on transfer rates be-
tween soil and plants which were determined with experimental data and
uncertainty on media lead levels was higher in areas far from sampled
sites. The wide distribution of predicted BLLs in children over 2 years old
may therefore partly be due to uncertainties in exposure levels.



Table 3
Distribution of predicted blood lead levels (BLLs) in France in each age group: median, 95th percentile (P95) and% childrenwith blood lead levels greater than 5 μg/dL. 1000
simulationswere performed in each grid unit. Results areweighted bypopulation density in each grid unit. Predictions are compared to observedBLLs collected in the Saturn-
Inf biomonitoring study in 2008–2009 (Etchevers, 2013).

Age (years) Median BLL (μg/dL) P95 BLL (μg/dL) Predicted % children with BLL > 5 μg/dL

Predicted Observed Predicted Observed

1
4.33 1.4 11.6 3.42 38.9

2
2.44 1.53 7.72 3.09 16.4

3
1.43 1.49 6.51 3.33 10.1

4
1.37 1.5 6.33 3.21 9.49

5
1.39 1.57 6.41 4.69 9.81

6
1.49 1.48 6.76 3.34 11.1

7
1.61 7.18 12.7

8
1.40 6.21 8.96

9
1.34 5.94 7.99

10
1.30 5.66 7.34

11
1.27 5.66 7.01
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Several sources of uncertainty and variability in exposure and physiol-
ogy were not modelled. Regarding exposure assessment, many cases of
highly exposed children are related to cultural or behavioral factors involv-
ing use of contaminated kitchen tools, crockery, or cosmetics, or lead-based
paint in households, which are not considered in our environmental expo-
sure model. Adding these individual behavioral factors would have further
increased the prevalence of elevated predicted BLLs. Certain physiological
variabilities were also not modelled realistically. In particular, the growth
model and variability assumed around body weight at a given age does
not cover the highest percentiles of observed weight distributions (SI sec-
tion 4.2): obesity is not taken into account. Since overweight children
have a lower proportion of bone in total bodyweight, their BLLs would be
lower at a given exposure level. Furthermore, our methodology did not ac-
count for individuals moving from one location to another: children were
Fig. 4.Median (A) and 95th percentile (B) of predicted blood lead levels in
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assumed to remain at the same percentile of exposure in their grid unit
and in the same grid unit. This is not expected to affect BLLs to a large ex-
tent, since blood lead ismostly representative of recent exposure in children
according to the PBTK model.

The main sources of exposure to lead were age-dependent and mainly
dietary. In the previous analysis by Caudeville et al. (2012) in a Northern
French region, the largest contributions to lead exposure were drinking
water (38%), followed by soil (15%), vegetal foods (17%), and milk inges-
tion (13%) in the population aged 2–70 years old. In the present study, the
direct contribution of soil was smaller, and the analysis suggested vegetal
food stuff and milk may be important exposure sources in children under
2 years old, although there is high uncertainty in this age group. Tap
water was an important source of exposure in children over 2 according
to our results, contrary to findings in another French exposure modeling
children aged 5 in France. Uninhabited areas are represented in white.
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analysis (Glorennec et al., 2007), where over half the children were as-
sumed not to drink tap water. Furthermore, in a modeling approach com-
bining the Stochastic Human Exposure and Dose Simulation (SHEDS)
multimedia model with IEUBK (Zartarian, 2017) and using exposure data
from the US, soil and dust were the main source of exposure in infants,
and water was the other main source of exposure in infants (0–6 months),
or food in children aged 1–2 years old.

Lead in air was not directly responsible for elevated BLLs predicted in
children. The estimated contribution of air for a median exposure in
France is lower than the contribution estimatedwith IEUBK in an urban en-
vironment in UK before 1990 (3% of exposure via inhalation) (Davies et al.,
1990), and higher than the geometric mean contribution (0.09%) from in-
haled air, estimated with IEUBK, in an urban environment in Australia be-
tween 2001 and 2006 (Gulson et al., 2018).

Several improvements of the PBTKmodel developed byO'Flaherty et al.
were envisioned, in particular based on additional data collected since the
model was developed. The relationship between plasma and whole BLLs
was updated by several authors (see SI sections 2.1 and 3.2, SI Fig. 9); in
the present work it was not updated based on the additional experimental
data collected from the literature because the updated blood:plasma lead
relationship provided less accurate predictions of BLL at environmentally-
relevant exposure levels. Other components of the model, such as the frac-
tion of lead excreted by glomerular filtration in children, could also be ad-
justed to more realistic values. These changes were not retained in the
model since the model was developed and validated with a set of equations
and parameter values which produced adequate results in a trade-off be-
tween physiological accuracy and model parsimony, while maintaining
prediction accuracy. Modifications of the parameter values may imply
that additional physiological processes must be modelled in order to main-
tain prediction accuracy.

The discrepancy between BLLs predicted using IEUBK and the higher
BLLs predicted using the model by O'Flaherty in children aged 4 and over
could be attributable to many of the differences in model structure, which
pertain to all ADME processes. It is unlikely to result from higher leaching
from bones with the O'Flaherty et al. model, because young children have
very little mature cortical bone from which lead can leach into blood.
IEUBK is used as a reference in risk assessment and is assumed to provide
accurate estimates at least in younger children. However, in children over
4, other studies have also shown a slight discrepancy between IEUBK pre-
dictions and biomonitoring data. IEUBK model predictions were within
1 μg/dL of observations reported by Hogan et al. (1998), a biomonitoring
study in children aged 0–7 years old, of which 28% of children were over
4 years old. Children aged 6–7 years oldwere underrepresented. In children
over 4, a slight underprediction using IEUBK was reported, which could
partly explain that IEUBK predictions were lower than those obtained
with the model by O'Flaherty et al. On the other hand, it can also be
noted that in a simulation study coupling SHEDS and IEUBK, the median
BLL in children aged 2 to 6 years old was slightly overestimated (up to
23%) (Zartarian, 2017). However, the difference in predictions in children
older than 4 between IEUBK model and the model by O'Flaherty is larger
(up to almost 3-fold) than the differences reported between IEUBK predic-
tions and the biomonitoring data.
5. Conclusions

The combination of a multimedia exposure model and an existing PBPK
model for lead provided realistic predictions of median blood lead levels in
France in children aged 2 and over, but the variability, and thus the 95th
percentile, were slightly overestimated. In children under 2 years old,
high uncertainties in exposure lead to overestimation of their BLLs. Map-
ping environmental contamination by lead and the resulting BLLs in chil-
dren in France highlights the impact that some particularly highly
contaminated geographical sites can have on blood lead levels via con-
sumption of local products, which is important in prevention of saturnism.
Regarding environmental exposure, tap water appears to be still a major
8

concern in certain locations in children over 2 years old, as well as vegetal
food stuff and milk in particular in children under 2 years old.

This work highlights several uncertainties regarding exposure, which
call for additional data and knowledge in transfer between environmental
media. In particular, the data on soil contamination is sparse in some
areas, soil contamination around many legacy sites is unknown, and envi-
ronmental exposure estimates in infants are uncertain. Furthermore, the
present results are limited to environmental contamination: behaviors
such as use of traditional contaminated kitchenware, consumption of bot-
tled water, and other factors such as lead-based paint in households and
breast feeding could explain differences in findings with other studies on
children's exposure.
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