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A B S T R A C T   

In this study, firstly, three first-order local closure vertical diffusion schemes used in multiple mesoscale chemical 
transport models (CTM) were embedded in the CHIMERE CTM model and tested over a one-year simulation 
covering the whole France. Three model configurations present a fair reproduction of pollutant concentrations 
both in urban and rural areas, indicating it is an effective way to reproduce the dispersion of pollutants in 
chemistry transport modeling. However, it cannot be expected to significantly improve the vertical mixing under 
the first-order closure scheme. Secondly, a 1.5-order turbulence kinetic energy-based eddy diffusivity closure 
scheme called as the new eddy diffusion (NED) is implemented in CHIMERE to describe more realistic diffusion 
processes near the surface. A fifteen-day simulation encompassing a winter pollution episode was performed for 
three major cities with horizontal resolution of 1.67 km and the first layer height at 12 m, respectively. The NED 
scheme improved NO2 simulations at most urban sites compared to the initial Kz diffusion scheme (IKD). Taking 
the root mean square error as evaluation criteria, the average improvements are 18.8%, 24.5% and 9.5% for NO2 
simualtion in Paris, Lyon and Bordeaux respectively. For the model performance of PM2.5 and PM10 simulations 
in the urban areas of Paris, the improvements are 13.5% and 19.1%, respectively. Overall, preliminary outcomes 
of this study are encouraging. The simulation with more sophisticated and realistic eddy viscosities are better 
than for IKD that is widely used in CTMs, but we need to realize that this is only a fifteen-day simulation for three 
cities, for further research, longer periods are needed with a greater variety of meteorological situations to prove 
the universality of the NED scheme.   

1. Introduction 

Air pollution is one of the biggest public health hazards worldwide 
responsible for over 6 million premature deaths every year (Forouzanfar 
et al., 2016; Lim et al., 2012; Valari et al., 2020). In cities, air quality is a 
major concern for citizens and city managers (Baklanov et al., 2007). 
With the development of high performance computers and a better 
knowledge of the meteorology and air pollution sources, meteorological 
and air quality modeling have been widely used in the last decades, 
particularly in urbanized and industrialized areas (Colette et al., 2011; 
Gašparac et al., 2020; Stohl et al., 2015). Today, High resolution 
mesoscale chemistry–transport models (CTM) such as Community 
Multiscale Air Quality Model (CMAQ), Comprehensive Air quality 

Model with extensions (CAMx) or CHIMERE have achieved sufficient 
accuracy to be considered for urban air quality predictions (Byun and 
Schere, 2006; Fillingham, 2019; Sokhi et al., 2018; Terrenoire et al., 
2015). However, urban air pollution patterns are rather variable and 
spatially heterogeneous (Wolf et al., 2020), the heat and chemicals 
released by transportation, together with the huge amount of waste from 
the consumption of human activities, are the main sources of urban 
atmospheric pollution. The movement of pollutants includes transport, 
dispersion and deposition (Hirabayashi et al., 2012). Transport is the 
movement caused by mean wind flow. Dispersion is caused by local 
turbulence. Deposition processes, including precipitation, scavenging 
and settling, cause pollutants to move downward and will eventually 
settle to the surface (Amodio et al., 2014). Besides, geographical 
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condition also plays an important role in transportation and dispersion 
of pollutants. Pollutants dispersion processes over the valley-basin city 
are much more complicated than over flat areas. Therefore, pollution 
episodes have been frequently witnessed over complex terrain, espe
cially in wintertime (Chen et al., 2019; Sabatier et al., 2020). 

There are various types of artificial surfaces in urban areas, such as 
asphalt roads, concrete sidewalks, glass curtain walls, parking lots, and 
green spaces which have impact on urban air quality (Wise, 2016). For 
example, computational fluid dynamics studies indicated that the flow 
resistance of tree crowns decreased wind speed and the dispersion of 
pollutants is limited in the ground level and the particulate matter 
concentrations accumulate within the canyon (Gromke and Blocken, 
2015). These diversified types of artificial areas appear alternately, 
leading to complex, diverse, and non-uniform urban canopy character
istics, which give more complex turbulent airflows in urban region, 
increased the difficulty of air quality simulation and forecast in cities 
than in other regions. Thus, the interactions between urban and the 
atmosphere remains challenging (Letzel et al., 2008), especially to 
simulate airflows and dispersion within the urban canopy (Baker et al., 
2004). Turbulence plays an important role on the vertical mixing of 
pollutants and other physical parameters (Menut et al., 2013a, 2013b; 
Pierce et al., 2010), but the representation of turbulence is difficult to 
predict particularly close to the ground levels. Studies have found that 
models tend to underestimate pollutant concentrations in urban areas 
when there is an explosive increase in pollutant concentrations, mainly 
due to inadequate turbulence treatment within the boundary layer 
(Huszar et al., 2020; Kurppa et al., 2018). All CTMs must account for the 
problem of turbulence, even if turbulent processes are still not fully 
understood (Argyropoulos and Markatos, 2015; Novati et al., 2021). For 
mesoscale CTM models, the turbulent diffusion is mainly based on the 
gradient transport theory (K-theory) which is a first order turbulence 
closure. It defines the turbulence fluxes as analogous to molecular 
transport, assuming that the turbulence is a fluid parcel, which has the 
same properties as the molecular transport model, and a linear rela
tionship between the gradient and the flux is thus obtained (Huang, 
2019; Klimontovich, 1985). This local turbulence closure approach as
sumes that turbulence consists of only small eddies, causing diffusion- 
like transport. For example, the vertical kinematic flux w′c′ of a 
pollutant can be modeled as being equal to an eddy thermal diffusivity K 
times the vertical gradient of mean concentrations c. 

w′ c′
= − K

∂c
∂z

(1) 

Also, the near-surface flow is complex process to simulate, the nature 
of turbulent transport is far from a simple linear relationship, it changes 
with the spatial scale of the atmospheric turbulence field and this notion 
of scale for turbulence is of major importance (He et al., 2019). In 
mesoscale model, the grid size is considerably larger than the energy 
containing turbulence scale, the turbulent energy is clearly in the un
resolvable sub-scale (Wyngaard, 2004). Therefore, the turbulence can be 
parameterized instead of explicitly resolved. Currently, the most main
stream turbulence parameterization method is based on the first-order 
local closure scheme. Many studies show that this concise method is 
reliable under unstable and neutral conditions. However, the high pol
lutants concentrations are frequently observed under very stable con
ditions usually associated with cold weather (Wolf-Grosse et al., 2017; 
Zilitinkevich and Esau, 2005), which makes harder to provide an ac
curate prediction of pollution level and the early warning of pollution 
episode (PE). The traditional turbulence parameterization scheme is 
contaminated by submesoscale motions during PE, which makes the 
application of similar theory difficult and this is an important reason 
why models tend to underestimate pollutant concentrations during PE. 
A way to improve the turbulence parameterization is to increase the 
order of the closure (Stull, 1988). 

The first part of this study addresses the results of the one-year air 

quality simulation that was determined by three first order K-theory 
vertical diffusion coefficient (Kz) from three mesoscale models 
(CHIMERE, CMAQ and FALL3D) respectively defined as Kz1, Kz2 and 
Kz3. Inter-annual trends, seasonal and daily variations of main pollut
ants concentrations are presented. Here, it has been chosen to focus on 
both cities and surroundings in whole France domain. Then, in view of 
the shortcomings of the first order K-theory scheme, two new configu
rations based on the initial Kz in CHIMERE (Kz1) were applied in urban 
areas. 

In the second part of the study, we use the eddy diffusion from the 
1.5-order closure TKE embedded in the Weather Research and Fore
casting (WRF) model as a new Kz in the CTM CHIMERE to describe more 
realistic diffusion processes near the surface for urban pollution appli
cations. Two schemes are defined: one as the initial K-theory diffusion 
(IKD) scheme in CHIMERE and one as the new eddy diffusion (NED) 
scheme from WRF respectively. A high spatial resolution simulation, 
which is conducted for a winter period from 20th November to 4th 
December 2016 over three major cities (Paris, Lyon and Bordeaux) in 
France was performed with the WRF/CHIMERE suite. The results are 
presented in terms of model performances between the configurations 
for the usual criteria pollutants. The goal of this study is to propose a 
more advanced diffusion scheme to improve air quality simulations and 
forecast over urban and peri-urban area especially on the short-term 
pollution events. 

2. Model description and experiment design 

2.1. Experiment design for the first order K-theory study 

The first step addresses the results of the one-year air quality simu
lation that was performed with three different first order local closure K- 
theory scheme to estimate the Kz within the boundary layer. The initial 
Kz in CHIMERE is defined as Eq. (2): 

Kz = kwsz
(

1 −
z
h

)2
(2)  

where k is the von Karman constant set to 0.41 in the model, z is the 
altitude, h is the boundary layer height, and ws is the vertical scale given 
by the similarity formulae. Convective turbulence driven by buoyancy 
dominates during the day, while turbulence driven by wind shear at 
night is more dominant (Warner, 2010). 

In stable conditions (h/L ≥ 0), the ws is defined as (3): 

ws =
u*

1 + 4.7z/L
(3) 

In unstable conditions (h/L < 0), the ws is defined as (4): 

ws =
(
u*

3 + 2.8αw*
3)1/3 (4)  

where α = max (0.1, z/h), u* is the fractional velocity, w* is the 
convective velocity, L is the Monin–Obhukov length (Menut et al., 
2013a). The Monin–Obukhov similarity theory widely used in mesoscale 
CTM model and it has many expressions. For the k-theory in the CMAQ, 
the Kz is defined by (Holtslag and Boville, 1993) as (5): 

Kz = k
u*

ws
z
(

1 −
z
h

)2
(5) 

In stable conditions, the ws is defined as (6): 

ws = 1+ 5
z
L

(6) 

In unstable conditions, the ws is defined as (7): 

ws =
(

1 − 16
z
L

)− 1
4 (7) 

In a three-dimensional Eulerian model (FALL3D)(Folch et al., 2009), 

L. Jiang et al.                                                                                                                                                                                                                                    



Atmospheric Research 279 (2022) 106394

3

Kz is defined as (Costa et al., 2006) (8): 

Kz = ku*wsz
(

1 −
z
h

)
(8) 

In stable conditions, the ws is defined as (9): 

ws =
(

1 + 9.2
z
L

)− 1
(9) 

In unstable conditions, the ws is defined as (10): 

ws =
(

1 − 13
z
L

)1
2 (10) 

An example of mass conservation is shown in Fig. S1 and more detail 
explanation of Kz can be found in Supporting Information Text S1. 

As a first analysis, a long-term simulation covering the entire year 
2016 has been performed with three Kz parameterizations as previously 
mentioned. The Kz from CHIMERE, CMAQ and FALL3D are defined as 
Kz1, Kz2 and Kz3 respectively. Among them, the Kz1 scheme is the 
initial vertical diffusion scheme of the CHIMERE model. We tested 
several schemes based on first order K-theory vertical diffusion and 
finally selected Kz2 and Kz3 as the reference schemes for this study. A 
minimal Kz is setup to 0.01m2/s in the dry boundary layer and 1m2/s in 
the cloudy boundary layer in three schemes to avoid unreasonable low 
mixing (Menut et al., 2013a, 2013b). 

The simulation is performed from 1st January to 31st December 
2016 at 7 km horizontal resolution over France which maintain a 
consistent horizontal resolution for the French air quality monitoring 
platform PREV'AIR. The domain is discretized vertically with 20 vertical 
levels from 998.5 hPa to 500 hPa, with the lowest level at about 12 m 
and 14 levels below 1000 m. Meteorological input data were taken from 
the Integrated Forecasting System (IFS) model from the European Centre 
for Medium-Range Weather Forecasts (ECMWF) available at a 7 km 
resolution at six-hourly time steps. Chemical boundary conditions were 
obtained from a lower (25 km) resolution simulation performed on a 
European domain. The sector specific European Monitoring and Evalu
ation Program (EMEP) inventory (details can be found in https://www. 
emep.int/) and French National Spatialized Emission (INS) Inventory 
has been used for anthropogenic emissions in the model, at a resolution 
of 0.1◦x 0.1◦. 

The air quality monitoring data are taken from the French Central Air 
Quality Monitoring Laboratory (LCSQA)(Honore et al., 2006). A total of 
57 urban and 15 rural background air quality monitoring stations are 
selected. They provide hourly surface concentrations of criteria pollut
ants (NO2, PM2.5, and PM10) and are used to assess the performances of 
the models with the various Kz parameterizations, the locations of sta
tions is shown in Supporting Information Fig. S2. 

To quantify the difference between model and instruments data, 
mean bias (MB), mean linear correlation coefficient (R) and root mean 
square error (RMSE) is used to assess the performances. The definition of 
RB, MB, R and RMSE is shown in the Text S2. 

2.2. Model description and observations data for the second study 

On the second step of this experiment the WRF model (Version 3.9.1) 
provides the high resolution meteorological input data for the CTM. The 
simulation is performed from 20th November to 4th December 2016, 
including a three days heavy PE from 30th November to 2nd December. 
The initial and boundary conditions of WRF are issued from the Global 
Forecasting System (GFS) analysis data from the National Centers for 
Environmental Prediction (NCEP), available at a 0.25◦ × 0.25◦ resolu
tion at six-hourly time steps. Anthropogenic emissions are generated 
with the EMEP and INS emission inventory, this is in line with the first 
part of the study. In order to calculate realistic meteorological input 
variables and pollutant concentrations, the system is configured with 
four nested-grid domains over three areas Paris, Lyon and Bordeaux (as 
shown in Fig. 1) with 106 × 91, 118 × 115, 115 × 103 and 85 × 79 grid 
points, with cell sizes of 45 km (d01), 15 km (d02), 5 km (d03), and 1.67 
km (d04) horizontal resolution, respectively. The domain size and res
olution are the same for the three areas. The model physical parameters 
setting are based on our previously study (Jiang et al., 2020). 

The CTM model CHIMERE (Version 2013) (Menut et al., 2013a, 
2013b) is used for air quality modeling in the present study. CHIMERE is 
a state-of-the-art Eulerian offline CTM model using a mass conservative 
approach to reproduce pollutant chemical transformations and trans
port. The initial vertical diffusion of CHIMERE called as IKD in this study 
is based on first order closure scheme, it is mostly controlled by the PBL 
height. The horizontal diffusion is is set as a constant value (1m2/s) in 
CHIMERE. The PBL height is directly read from WRF and capped at a 
minimal value of 20 m to avoid unrealistic simulations. In CHIMERE, the 
Kz is calculated as Eq. (2). 

Many studies indicate this first order closure K-theory is appropriate 
for mesoscale modeling particularly for neutral to weakly stable con
ditions. However, our previous studies (Jiang et al., 2020) found that the 
difference in simulated PM2.5 concentrations during heavy pollution 
episode could be as high as two to five times according to different 
planetary boundary layer (PBL) schemes. Some of the PBL schemes 
cannot effectively simulate the height of the boundary layer during the 
pollution period, resulting in the simulated pollutants concentrations 
several times higher than the observations. There are generally two 
ways to improve the mesoscale vertical mixing. The first is to use a 
higher-order local closure scheme to replace the turbulence parame
terization scheme. Second, use non-local closure scheme, the unknown 
quantity on the grid point can be determined by the known quantity on 
the grid point farther away in the vertical direction rather than only 
determined by the same grid (Warner, 2010). 

The WRF Version 3.9.1 provides 13 PBL schemes that can be clas
sified mainly according to critical Richardson number or TKE, 
commonly referred to as first-order closure and TKE closure schemes for 
PBL turbulence modeling and PBL height determination(Tyagi et al., 
2018). The TKE order-1.5 model was calculated from Boulac PBL 
scheme defined as NED scheme in the second step of this study. The 
computation strategy of NED can be separated into the following 
sequential steps:  

i. Activate the Kz output (variable “vertical eddy viscosity” in the 
WRF Registry), because it is not a default output variable in WRF;  

ii. Perfom WRF simulation based on Boulac PBL scheme and store 
calculated Kz values (NED);  

iii. Pre-processing in CHIMERE: Interpolate NED to CHIMERE;  
iv. Initialization phase of CHIMERE simulation, replacing IKD with 

NED; 

Fig. 1. Four nested domains—from the coarsest resolution d01, to the highest 
resolution d04. 
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v. Launch the main step of CHIMERE simulation and get all output 
variables based on NED. 

The prognostic equation for TKE e under the assumptions of hori
zontal homogeneity can be written as (11): 

∂e
∂t

= −
∂
∂z

(

w'e+
w'p'
ρ0

)

+
g

θv0
w'θv −

(

w'u'
∂v
∂z

+w'v'
∂u
∂z

)

− ε (11) 

Where u, v, w are the wind components, θv is the mean virtual po
tential temperature, p is the pressure, ρ0is the density, g is the gravita
tional acceleration and ε is the viscous dissipation of TKE (Stull, 1988). 

The 1.5-order TKE is also constructed based on gradient transport 
theory as (12): 

wϕ = − K
∂ϕ
∂z

(12) 

The left side represents the Reynolds-average operator, the vertical 
turbulent flux wϕ is parameterized as the product of local gradient of 
analytical variable ϕ and eddy diffusivity K. In Boulac scheme, vertical 
eddy diffusivity is defined as (13): 

Kz = Ckl
̅̅̅
e

√
(13) 

Where Ck is a constant set up to 0.7, l is the vertical length scale 
(Deardorff, 1980), and e is the TKE defined as (14): 

e =
1
2
(
u'2 + v'2 +w'2

)
(14) 

In Boulac scheme, it is assumed that at individual level in the at
mosphere, the length scale l may be related to the distance that the 
parcel originating from the corresponding level and having the initial 
kinetic energy equal to the average TKE of the layer which can move up 
and down before being prevented by the buoyancy effect (Bougeault and 
Lacarrere, 1989). The lup and ldown is defined as (15): 
∫ Z+lup

Z
β(θ(Z) − θ(Z ') )dZ ' = e(Z)

∫ Z

Z+ldown

β(θ(Z) − θ(Z ') )dZ ' = e(Z)
(15) 

Thus, the length scale l will assume a value between lup and ldown. In 
Boulac scheme, the l is written as (16): 

l =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
lupldown

)√

(16) 

The advantage of this scheme is to allow for remote effects of stable 
zones to define the turbulence mixing length scale (Bougeault and 
Lacarrere, 1989). This vertical mixing scheme solves a prognostic TKE 
equation which includes TKE advection and parameterizes sources and 
sinks from shear production, buoyancy, mixing and dissipation (Simon 
et al., 2019). Here we need to emphasize that the TKE calculation is a 
one-way method, and therefore does not affect the performance of there 
corresponding boundary layer scheme. 

The hourly surface concentrations of criteria pollutants (NO2, PM2.5, 
and PM10) issued from LCSQA. The location of the air quality monitoring 
stations (AQS) can be found in Fig. S3. 

3. Results and discussions 

3.1. The first order K-theory tests 

3.1.1. Vertical distributions of the first order K-theory tests 
A sensitivity test using the same model configurations, but different 

vertical diffusion coefficients was performed to understand the role of 
each Kz in stable and unstable conditions. As shown in Fig. 2, three 
schemes display similar Kz at low levels in stable condition, with a 
relatively high surface diffusion rate in Kz3 and relatively low surface 
diffusion rate in Kz2, the Kz1 shows a slightly higher Kz in all levels. 
However, Kz3 has obviously stronger Kz in middle levels. Under un
stable conditions, the ground level Kz shows a completely opposite trend 
to stable condition, with Kz2 > Kz1 > Kz3 at ground level. In the middle 
levels, the difference between the different schemes is significantly 
higher than the stable condition. The yearly averaged vertical profiles of 
Kz, NO2, O3, PM2.5 and PM10 can be found in Fig. S4, and the seasonal 
variations of main pollutants can be found in Fig. S5. Models under
estimated NO2 concentrations whatever the season, but particularly 
during wintertime. The negative biases are − 6.1 μg/m3, − 6.2 μg/m3 

and − 7.1 μg/m3 for Kz1, Kz2 and Kz3 in winter respectively, it can 
indicate the model may overestimate vertical mixing in urban region. 
The model displays relatively better performances in PM2.5 simulation, 
with slight negative biases in summer and positive biases in the rest of 
seasons. However, three schemes underestimated PM10 concentrations 
in every season. The ratio of PM2.5 /PM10 exceeds 90% in all seasons in 
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Fig. 2. Sensitivity test of vertical profile of Kz (m2/s) in stable and unstable conditions.  
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the tests, while the ratio is usually around 70% in the observations. This 
could also indicate the underestimation of coarse particles in the emis
sion inventory, natural or anthropogenic in origin. 

3.1.2. Comparison of model results with observations 
In order to better evaluate the impact of vertical diffusion co

efficients on the air quality predictions, modeled time series of the 
pollutants concentrations compared with the observations for urban and 
rural region are displayed in Fig. 3. In urban areas, the models capture 
the time variability quite well for NO2, PM2.5 and PM10 simulations, 
particularly for the PM2.5, model well reproduced the seasonal vari
ability. However, the model tends to underestimate the NO2 and PM10 

concentrations in urban areas especially during wintertime for NO2 and 
summertime for PM10. The yearly average surface mass concentrations 
of PM2.5 and PM10 are respectively 10.4 μg/m3 and 15.4 μg/m3 from the 
observation over the France domain, the ratios of PM2.5/PM10 67.3% in 
the observation. In the cases of simulations, PM2.5 surface concentra
tions are 10.8 μg/m3, 11.2 μg/m3, 10.6 μg/m3 and PM10 surface con
centrations are 11.7 μg/m3, 12.1 μg/m3, 11.5 μg/m3 from Kz1, Kz2 and 
Kz3, respectively. The ratios of PM2.5/PM10 are almost the same which is 
approximately 92.5% for three schemes, the bias of the ratios of PM2.5/ 
PM10 is approximately 25.3% compare to observations. The diurnal 
cycle of main pollutants is shown in the Fig. S6. The diurnal cycles of 
NO2, PM2.5 and PM10 have a similar behavior at urban sites, with two 
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Fig. 3. Time series between observed and modeled NO2, PM2.5 and PM10 mass concentrations (μg/m3) in Urban and Rural areas over the whole France domain.  

Table 1 
Statistics of surface variables: mean linear correlation coefficient (R); mean bias (MB) and root mean square error (RMSE) between the simulations and observations of 
NO2, PM2.5 and PM10 in Urban and Rural areas.   

NO2 PM2.5 PM10 

Kz1 Kz2 Kz3 Kz1 Kz2 Kz3 Kz1 Kz2 Kz3 

Urban R 0.73 0.76 0.74 0.83 0.83 0.84 0.74 0.75 0.76 
MB − 6.4 − 7.1 − 8.4 0.56 0.16 − 0.10 − 4.3 − 4.7 − 5.0 
RMSE 9.3 9.6 10.6 4.8 4.5 4.3 7.4 7.6 7.5 

Rural R 0.72 0.73 0.73 0.88 0.88 0.87 0.78 0.77 0.77 
MB − 0.47 − 0.62 − 1.3 1.1 0.67 0.56 − 2.4 − 2.8 − 2.9 
RMSE 2.1 2.1 2.4 3.7 3.3 3.3 5.2 5.1 5.2  
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peaks occurred in the morning and evening rush hours. In rural areas, 
the evening peak did not appear, with a gradual accumulation at 
nighttime. Compared with observations, the simulations display more 
significant diurnal differences for all pollutants, and the model signifi
cantly underestimates the concentration of NO2 and PM10 during day
time. This indicates that the K-theory schemes may overestimate the 
vertical mixing under unstable conditions. All three schemes in rural 

areas display a quite good reproduction of the evolution of pollutant 
concentrations and better capture the fluctuations of pollutants in the 
wintertime and for urban areas. The models underestimate PM10 con
centrations particularly in summertime. Table 1 provides an overall 
evaluation of the three schemes in urban and rural areas including R, MB 
and RMSE. In general, the models present a better performance in rural 
than urban areas. NO2 and PM10 concentrations are largely 
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Fig. 5. Maps of the mean vertical diffusion coefficient (m2/s) at first layer (12 m); mean surface NO2 mass concentration (μg/m3) over the period from 20th 
November to 4th December. The first line: results from IKD scheme; the second line: results from NED scheme. 

L. Jiang et al.                                                                                                                                                                                                                                    



Atmospheric Research 279 (2022) 106394

7

underestimated in urban areas than for rural areas. This indicates the 
model overestimates vertical mixing in urban areas to some extent by 
comparing it to rural areas, although vertical mixing is only one of the 
causes of error. The value of exponent p is considered as 2 (the “square” 
in the equation) in Eqs. (1) and (5). The range of this value has been 
considered from 1 to 3 by Troen and Mahrt (Troen and Mahrt, 1986), the 
vertical mixing varies considerably correspond to the range of p from 1 
to 3 (Hu et al., 2010). Therefore, the results show that setting p value to 2 
is applicable in rural areas, but the p value is overestimated in urban 
areas. An easy way to improve such a first order local closure scheme is 
to set p according to types of land use. Comparing the performances of 
three k-theory schemes and taking RMSE as the criterion for judging the 
ability of the model, as shown in Table 1 the differences between the test 
results are small. Therefore, it cannot be expected to significantly 
improve the mesoscale model for air quality simulation and forecast 
through the modification of diffusion coefficient based on first order 
local closure scheme. 

3.1.3. Additional tests based on Kz diffusion in CHIMERE 
Previous studies demonstrate all three schemes underestimates NO2 

concentrations in cities therefore three schemes may overestimate ver
tical mixing in urban areas because NO2 is typically a “local” pollutant. 
In this section, two new tests based on the Kz1 as Eq. (2) is applied as the 
new Kz in urban areas over France. 

In the first test, we divide the Kz1 by 2 in urban region, the new Kz 
called as Kz1-D2 and defined as in Eq. (16): 

Kz = 0.5*kwsz
(

1 −
z
h

)2
(16) 

In the second test, we decrease the p value from 2 to 1 in the Kz1 in 
urban region, the new Kz called as Kz1-P1 and defined as in Eq. (17): 

Kz = kwsz
(

1 −
z
h

)
(17) 

The time evolution of hourly-averaged NO2, PM2.5 and PM10 be
tween observation and three tests involved in the inter-comparison is 

provided in Fig. 4. In general, the two new tests simulated higher surface 
NO2 concentrations in urban areas compared with the Kz1. The average 
NO2 concentrations are 17.9 μg/m3, 29.2 μg/m3, 22.2 μg/m3 from Kz1, 
Kz1-D2 and Kz1-P1, respectively. The small differences between the tests 
can be found in PM2.5 and PM10 simulations. This result is acceptable, 
because NO2 mainly comes from local emissions which is more sensitive 
to the vertical diffusion rate and PM is affected by both local emissions 
and regional transport. As shown in Table S1, Kz1-P1 gives a slightly 
better performance for all pollutants. The agreement with observations 
is generally better than for the other two cases. The Kz1-D2 test over
estimated NO2 surface concentrations, which indicates that dividing the 
vertical diffusion rate by two could underestimate vertical mixing in 
urban region. The results again demonstrate that through the modifi
cation of vertical diffusion coefficient based on first order local closure 
scheme cannot significantly improve the ability of the CTM. 

3.2. Model performance based on initial Kz and new eddy diffusion 

3.2.1. NO2 simulation in urban background stations of Paris 
The surface temperature varies between − 1.4 ◦C and 9.3 ◦C during 

this time period, with an average of 4.0 ◦C at urban region of Paris, the 
average surface wind speed was 2.3 m/s, no rainfall during this period. 

Road traffic emission is the largest contribution to NO2 concentra
tions in urban areas (Dragomir et al., 2015; Lee et al., 2014; Palmgren 
et al., 1996). The mean first layer NO2 concentrations and Kz over the 
period are shown in Fig. 5. The results show that the absolute values are 
different between the IKD and NED schemes, the regional patterns are 
similar for the Kz and the two pollutants. It is a bit obvious that the 
results over urban areas exhibit the role of NOx emissions on NO2 con
centrations. The Kz simulated by the NED method is significantly lower 
than the IKD scheme over the entire region. The average surface Kz from 
NED scheme is 1.1m2/s in the urban region which is less than half of the 
IKD scheme (2.5m2/s). Consequently, the NED scheme runs generate 
remarkably higher surface NO2 concentrations by 6.9 μg/m3 on average 
in urban area. 
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Fig. 6 shows the time series of hourly averaged mass NO2 concen
trations, from all urban background stations from November 20th to 
December 4th 2016. The linear regression of NO2 between observations 
and simulations can be found in Fig. S7. Compared to the IKD scheme, 
the NED scheme showed better correlation with observations for all 
sites. Relatively high NO2 concentrations were observed in all four urban 
background stations, with a mean concentration of 53.5 μg/m3; 50.1 μg/ 
m3; 52.5 μg/m3; 49.7 μg/m3 in FR04002; FR04034; FR04143; FR04156 
station, respectively. Table 2 lists the performances of NO2 simulation 
for both schemes with their average mass concentration (Avg); R; MB 
and RMSE at each station. The results show that the period is well 
modeled by the IKD scheme with a correlation from 0.62 to 0.74. 
However, this scheme seems to underestimate NO2 concentrations at all 
stations, this is mainly because of the underestimation during the 
pollution episode (PE). The performance of NED scheme is very satis
factory and improves NO2 simulations for most of stations. 

Taking the relative change in % of the RMSE as the evaluation 
criteria of the model performances which defined as (18): 

Imp(%) =
RMSEtes − RMSEref

RMSEref
*100 (18) 

Where RMSEtes refers to the RMSE of the test case and RMSEref refers 
to the RMSE of the reference case. The largest improvements occur for 
the south-Paris FR04034 station (improved by about 19.2%). The 
averaged time series and statistics for the urban background stations are 
summarized in Fig. S8 and Table S2. The two schemes capture quite well 
the evolution of NO2 concentrations over the urban region, the R and MB 
are 0.74 and − 10.4 μg/m3 for IKD scheme and 0.80 and − 3.8 μg/m3 for 
NED scheme with the improvement is of 18.8% in the urban area. Fig. 6 
also shows the ability of the model to locate the pattern of the PE but also 
a clear underestimation of NO2 concentrations during the PE for all 
stations. At most of the sites, the peak concentration of NO2 occurred 
during the daytime on December 1st, the NO2 exceeded 200 μg/m3 in 
the observations but the model did not effectively capture this time with 
both schemes. The average mean bias in urban background stations for 
IKD and NED schemes during the PE are − 39.9 μg/m3 and − 24.1 μg/m3 

respectively, showing a better ability of the NED simulation to 

reproduce primary pollutant concentrations. 

3.2.2. Diurnal cycles of the surface Kz, NO2 in Paris region 
In order to investigate in-depth the differences between the schemes, 

the diurnal cycles are calculated for Kz and NO2 and compared with the 
corresponding surface observations at the urban background stations 
over the Paris region. Fig. 7(a) illustrates the mean diurnal Kz on urban 
regions. The diurnal variation of the surface Kz throughout the schemes 
shows similar patterns, Kz remains flat in the morning and nighttime and 
a peak is simulated around 12:00. The average Kz on the unstable 
condition from IKD scheme is approximately 1.6 times than NED scheme 
and approximately three times higher than for the stable condition. The 
bimodal distribution of the surface NO2 concentration are observed and 
simulated during this period, with the morning peak around 8:00–9:00 
and the evening peak around 18:00–19:00. Both schemes capture the 
fluctuations quite well, but the IKD scheme strongly underestimates NO2 
concentrations in the early morning. The results of the first part study 
prove that the IKD scheme overestimates the vertical diffusion rate in 
urban areas. This section further demonstrates that overestimation of 
vertical diffusion under stable conditions is higher than under unstable 
conditions in IKD. The NED scheme simulation overestimates NO2 
concentration at nighttime, the reason should be the overestimation of 
Kz drop after 14:00. 

3.2.3. PM2.5 and PM10 simulations in Paris region 
The maps of PM2.5 and PM10 surface concentrations for IKD and NED 

schemes are illustrated in Fig. S9. The NED scheme showed better cor
relation with observations for all urban sites compared to the IKD 
scheme. The surface concentration fields show a gradient between the 
surroundings urbanized area in both schemes but not as strong as for 
NO2 surface distributions, this result is expected because PM2.5 and 
PM10 is much more influenced by regional transport and particularly by 
peri-urban and rural emissions from biomass burning. The PM2.5 and 
PM10 surface concentrations from NED scheme is approximately 4.4 μg/ 
m3 and 4.2 μg/m3 higher on average than for the IKD scheme. 

Fig. 8 displays a comparison between the observed and modeled 
surface PM2.5 and PM10 at urban sites. The direct comparison shows a 

Table 2 
Average modeled NO2 mass concentrations (Avg); the correlation (R); mean bias (MB) and root mean square error (RMSE) between Observation and simulation of NO2 
in four urban background stations over Paris region.   

IKD NED 

Avg R MB RMSE Avg R MB RMSE improvementa 

FR04002 48.3 0.62 − 5.11 28.1 54.4 0.57 0.94 30.3 − 7.8% 
FR04034 31.1 0.74 − 18.93 32.1 40.0 0.78 − 10.01 25.9 19.2% 
FR04143 47.9 0.67 − 4.49 23.7 55.4 0.78 2.91 20.2 14.7% 
FR04156 36.8 0.69 − 12.87 30.7 40.8 0.72 − 8.85 28.2 8.0%  

a The “improvement” is the relative change in % of the RMSE by using the initial Kz diffusion (IKD) coefficient and by using the new eddy diffusion (NED) coefficient. 
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Table 3 
Average modeled PM2.5 and PM10 mass concentrations (Avg); the correlation (R); mean bias (MB) and root mean square error (RMSE) between Observation and 
simulation of PM2.5 and PM10 in urban background stations over Paris regions.   

IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

PM2.5 FR04002 24.2 0.63 − 1.4 18.2 27.7 0.74 2.2 16.2 11.0% 
FR04034 22.2 0.62 − 3.3 20.3 27.3 0.81 1.8 15.6 23.1% 
FR04143 27.9 0.72 2.4 16.3 32.7 0.86 7.1 14.4 11.6% 
FR04156 23.5 0.66 − 2.8 22.7 27.4 0.74 1.1 20.9 8.2% 

PM10 FR04002 26.6 0.66 − 10.9 25.8 29.7 0.76 − 7.8 22.1 14.3% 
FR04034 24.2 0.62 − 13.4 30.4 29.3 0.80 − 8.3 23.4 22.8% 
FR04143 30.3 0.70 − 4.5 21.4 34.9 0.86 0.07 15.2 28.9% 
FR04156 25.7 0.70 − 12.2 33.6 29.4 0.77 − 8.5 30.1 10.3%  
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fair reproduction of PM2.5 and PM10 concentrations during the regular 
day but the models underestimate the concentrations on the PE. The 
fluctuations of PM2.5 and PM10 at Paris center station (FR04143) is 
obviously different with others which indicate that the PM emissions at 
the center of the city is different with other sites, traffic emissions should 
be the major source of the FR04143 station. This also can be confirmed 
throughout the comparison between the fluctuations of NO2 and PM in 
the corresponding station. Both schemes display similar behavior for the 
simulated period and display a reasonable representation of PM2.5 and 
PM10 observations. The simulation of PM10 is good on regular day but 
the model tends to slightly overestimate PM2.5 concentrations at the 
same time. It indicates the slight overestimation of fine particles in the 
model. Two schemes underestimated PM concentration during the PE, 
the NED scheme gives a higher PM2.5 and PM10 concentrations than IKD 
scheme, which tends to be closer to the observations on the PE and the 
peaks of PM2.5 and PM10 are also enhanced from NED. As shows in 
Table 3, the striking result is the NED scheme which improves the PM2.5 
and PM10 simulation at urban sites. Based on RMSE indicator, the im
provements are almost >10% in every urban background station and the 
correlation are also significantly improved in the urban sites. 

We also notice that the underestimation of PM10 is obviously higher 
than for PM2.5 during the PE. There is no evident variation of this ratio 
on the PE for both observation and simulations, but the ratio is 
approximately 70% for the observation and around 90% for both sim
ulations. Considering the overestimation of fine particles concentra
tions, this result shows that model have a strong underestimation of PM 
with particles exceeding 2.5 μm. The model displays a reasonable 
behavior for both PM2.5 and PM10 on the PE, this indicates that the 
underestimation of pollutants on the PE is due to the underestimation of 
local urban pollution sources, vehicle emission and other local sources 
should play important roles on this period. 

3.2.4. NO2 simulations in urban area over Lyon and Bordeaux regions 
The IKD and NED schemes are also applied in Bordeaux and Lyon 

areas in order to understand whether the NED scheme can be used in 
other areas. Lyon is in the southeast of France and is located in the 
Rhone valley where the wind is meridional and often strong particularly 
in winter and is the second largest city in France. Bordeaux is close to the 
sea that is often influenced by oceanic flows and located in the south
west part of France. The period of interest remains the same from 20th 
November to 4th December. 

The mean first layer Kz for Lyon and Bordeaux domains over the 
period are displayed in Fig. 9 and surface NO2 mass concentrations can 
be found in Fig. S10. Both domains present similar regional distribution 
when compared to the Paris domain. The NO2 concentration are higher 
within the urban area and becomes patchier in the suburban and rural 
areas, these concentrations are higher near traffic sites. 

The time series of the model predictions of the NO2 mass concen
trations compared to the observations for all urban background stations 
over Lyon and Bordeaux region are shown in Fig. 10. The linear 
regression between observed and modeled NO2 can be found in Fig. S11. 
In general, the increase in NO2 mass concentrations during PE in Lyon 
and Bordeaux region are not as pronounced as the case in Paris. This 
demonstrates that the PE in Lyon and Bordeaux were not primarily 
caused by local sources. In Lyon, it seems that there are two slight NO2 
pollution episodes during this period. One from 22nd November to 26th 
November and another from 30th November to 3rd December. Overall, 
both schemes capture the majority of fluctuations quite well in both 
regions. In particular, the NED scheme almost perfectly captures the first 
peak of NO2, the 22nd December. However, although the IKD scheme 
captures the fluctuations of NO2, NO2 concentration are underestimated 
with IKD for the second light peak in Lyon from the nighttime of 30th 
November displayed in the observations. 

Table 4 reports a detailed evaluation of NO2 simulation for both 
schemes at each urban background station. As in Paris, the IKD scheme 

Fig. 9. Maps of the mean vertical diffusion coefficient (m2/s); over the period from 20th November to 4th December. The first line: results from Lyon domain; the 
second line: results from Bordeaux domain. 
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underestimates NO2 concentrations at all urban sites especially on the 
period of 30th November to 3rd December. Taking the RSME as the 
criterion, the use of the NED scheme improves NO2 simulation in every 
urban site especially in the three urban sites in the Lyon region with an 

average improvement of 24.51%. In general, the model has a better 
performance for NO2 simulation in Bordeaux than Lyon, that because 
the orography of Lyon is more complex than in Bordeaux, the city is 
close to the Alps in a hilly region with sharp terrain gradients and the 
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distribution of urban land use that is more scattered than Bordeaux. The 
diurnal cycles for surface Kz and surface concentrations of NO2 over 
Lyon and Bordeaux regions are provides in the Fig. S12. 

3.2.5. PM2.5 and PM10 simulations over Lyon and Bordeaux 
The PM2.5 and PM10 maps of mean concentrations in Lyon and 

Bordeaux domains over the period are displayed in Fig. S13 and 
Fig. S14, respectively. The results show the regional patterns of PM2.5 
and PM10 are similar for both schemes. The simulated surface PM2.5 
concentrations from NED scheme is approximately 1.6 μg/m3 and 1.4 
μg/m3 higher on average than for the IKD scheme in Lyon and Bordeaux 
region respectively and gives approximately 1.6 μg/m3 and 1.2 μg/m3 

higher PM10 surface concentration than IKD scheme in Lyon and 
Bordeaux respectively. The differences mainly occurred on the urban 
sites with slight differences in rural areas for both Lyon and Bordeaux 
domains. 

The comparison of simulated PM2.5 and PM10 concentrations by the 
IKD and NED schemes in Lyon and Bordeaux regions with observational 
data are presented in Fig. 11. The results show that the model could 
fairly capture the time variability of PM2.5 and PM10 on the regular days 
of Lyon domain but strongly underestimates the concentrations during 
the PE. In Bordeaux, the model could not reproduce the PM2.5 and PM10 
well for the whole period, a huge underestimation occurred at all sta
tion. A previous study (Lanzafame, 2019) indicates that the biomass 
burning emissions are strongly underestimated in the model over the 
western cities of France, especially for the city of Bordeaux. The Alps 
region is also often affected by pollution episodes in wintertime with a 
large contribution of residential wood burning (Bessagnet et al., 2020). 
Thus, the underestimation of the biomass burning emissions over Lyon 
regions should be a likely explanation of the issue during the PE. The 
specific quantitative analysis on the model performance of PM simula
tion is not confirmed in this section due to large uncertainties associated 
to emissions mainly. The model provides satisfactory results for NO2 
simulations but cannot give a reasonable behavior of PM2.5 and PM10 
when compared to the observations. This indicates the issue of PM 
simulations in Lyon and Bordeaux regions should not due to the model 
configuration. Improvements on the emission inventories are required 
first in those regions. 

4. Conclusions 

The flow characteristics and dispersion mechanisms of pollutants are 
important for air quality simulation and forecast. In the first part of this 
study, three vertical diffusion coefficients based on first order local 
closure scheme have been compared and evaluated by a one-year 
simulation over France. By comparing the model performances of the 
three schemes in urban and rural areas, we find that the schemes 
perform better in rural than in urban areas. The vertical mixing is 
relatively overestimated in urban areas. The results also indicate such 
simplest scheme is an effective way to reproduce the dispersion of pol
lutants both in urban canopy and surroundings in mesoscale chemistry 
transport model, but it cannot be expected to significantly improve the 
mesoscale model by this simple modification based on the first-order 

local closure Reynolds decomposition scheme. More obvious improve
ments need to start with a more accurate turbulence process. This first 
screening of usual K-theory diffusion parameterizations over a long-term 
simulation was a first step to identify limitations and possible 
improvements. 

The second part of the study used a 1.5-order turbulence kinetic 
energy-based eddy diffusivity closure scheme from WRF defined as NED 
on the urban air quality context to assess consequences of surface-level 
emission of nitrogen dioxide (NO2) and particulate matter (PM2.5 and 
PM10) in Paris, Lyon and Bordeaux. The performances of the NED and 
initial Kz diffusion (IKD) scheme were evaluated by ground observations 
both temporally and spatially. The study in Paris indicates both schemes 
can capture the evolution of the NO2, PM2.5 and PM10 concentrations in 
urban areas even though pollutants concentrations are somewhat 
underestimated on the pollution episode (PE). The NED scheme shows a 
better ability on PE prediction and displays a better performance in 
urban areas for NO2, PM2.5 and PM10 simulation with an average 
improvement at 18.8%, 13.5% and 19.1% respectively. 

The model performance in Lyon and Bordeaux confirm the results 
obtained in Paris. The NED scheme improves the NO2 simulation 
approximately by 24.5% and 9.5% in the urban areas of Lyon and 
Bordeaux respectively. However, PM simulations in Lyon and Bordeaux 
indicate that, based on previous studies, a strong underestimation of 
biomass burning emissions in wintertime could be the main reason. The 
NED scheme gradually improves the air quality simulation in urban 
areas. Although the overall performance of the proposed method is 
better than initial model configuration, the NED scheme still slightly 
overestimates the concentration of major pollutants during regular day. 
The underestimation of Kz of NED is more pronounced in the nighttime 
than the daytime. Further improvements are necessary particularly 
under stable boundary conditions. In general, 1.5-order turbulence ki
netic energy-based eddy diffusivity closure scheme is an effective way to 
improve the CTM ability particularly under stagnant conditions. It can 
be expected further improvement of the model ability through the use of 
higher-order turbulent closure schemes. The cost-benefit is also impor
tant in mesoscale modeling, the difference between the L4 and L12 cases 
for the operational time for simulating a single day meteorological and 
chemical transport processes is small, totally 149 min and 151 min, 
respectively. The difference in cost effectiveness between the two 
schemes is negligible. It is also important to notice that the results are 
based on a two-week simulation over early winter, longer periods are 
needed to further verify the reliability of the results. Meanwhile, the 
near-surface turbulence simulation also requires in-depth understanding 
and investigation, and further progress is expected in the future to have 
the substantial progress. 
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Table 4 
Average modeled NO2 mass concentrations (Avg); the correlation (R); mean bias (MB) and root mean square error (RMSE) between Observation and simulation of NO2 
in four urban background stations over Lyon and Boudreaux region.   

IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

FR20004 43.8 0.55 − 7.8 26.9 61.1 0.60 9.4 19.2 28.3% 
FR20017 44.5 0.44 − 3.1 29.0 62.9 0.53 15.3 20.6 28.8% 
FR20046 25.7 0.57 − 12.6 20.8 40.6 0.63 2.3 17.4 16.4% 
FR31001 21.9 0.71 − 1.2 13.8 34.1 0.74 7.9 11.3 17.7% 
FR31002 21.5 0.72 − 6.3 14.3 33.5 0.77 5.1 14.3 0.01% 
FR31007 16.9 0.65 − 7.2 14.2 27.1 0.66 2.9 12.6 10.9%  
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Fig. 11. Time series between observed and modeled PM2.5 and PM10 mass concentrations (μg/m3) in urban background stations. FR20XXX represents the station in Lyon region and FR31XXX represents the station in 
Bordeaux region. 
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